Fast simulation and prediction of urban pluvial floods using a deep convolutional neural network model

卷积神经网络 多雨的 大洪水 计算机科学 网格 深度学习 人工智能 梯度升压 人工神经网络 气象学 随机森林 环境科学 地质学 地理 海洋学 考古 大地测量学
作者
Yaoxing Liao,Zhaoli Wang,Xiaohong Chen,Chengguang Lai
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:624: 129945-129945 被引量:60
标识
DOI:10.1016/j.jhydrol.2023.129945
摘要

Urban pluvial floods induced by rainstorms can cause severe losses to human lives and property. Fast and accurate simulation and prediction of urban pluvial flood are of significance for disaster prevention and mitigation. However, physics-based models still experience excessive computational time when used for flood simulation and prediction. In this study, we explore a deep learning (DL) approach employing convolutional neural networks (CNN) as an alternative model to achieve fast prediction of urban floods. We first cluster a rainstorm-inundation database generated using a physics-based coupled model, then we develop a CNN model for predicting the spatial and temporal evolution of rainstorm inundation, and finally we compare the effectiveness of the CNN model with that of the coupled model and three other classical machine learning (ML) models. The results show that: 1) The inundation water depths predicted using the CNN model are close to those predicted using the coupled model, and the average PCC, MAE and RMSE metrics under a test rainstorm reach 0.983, 0.020 m and 0.086 m, respectively. 2) The CNN model reproduces well the trend of water depth in each model grid cell over time, especially for a heavily inundated grid. 3) The predicted effectiveness of the CNN model outperforms an extreme gradient boosting (XGBoost) model, followed by a multi-objective random forest (MORF) model and K-nearest neighbor (KNN) model. 4) The computational speed of the CNN model is extremely fast. The model can simulate inundation water depth with a spatial resolution of 8 m by 8 m (about 74 km2) and a temporal resolution of 30 min for a 6-hour lead time within 12 s, which is 600 times faster than that of a coupled model. We confirm that the CNN model with clustering method is a powerful surrogate model for fast simulation of urban pluvial flood, providing an important reference for the use of DL in early warning and mitigation in relation to urban flood disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Whim应助会撒娇的惜蕊采纳,获得30
1秒前
科研通AI5应助称心寒松采纳,获得10
2秒前
li完成签到,获得积分10
3秒前
科研通AI5应助三旬采纳,获得10
4秒前
舒适乐儿发布了新的文献求助10
5秒前
平常的玲完成签到,获得积分20
5秒前
科研小秦完成签到,获得积分10
7秒前
7秒前
肉丸完成签到 ,获得积分10
8秒前
Vincy发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
arrow13完成签到,获得积分10
11秒前
conghuang发布了新的文献求助10
13秒前
李健的粉丝团团长应助owl采纳,获得10
13秒前
小马甲应助王羊补牢采纳,获得10
13秒前
13秒前
13秒前
dmj发布了新的文献求助10
15秒前
15秒前
天天完成签到,获得积分10
16秒前
17秒前
17秒前
大模型应助1111采纳,获得60
17秒前
称心寒松发布了新的文献求助10
18秒前
大饼卷肉完成签到,获得积分10
18秒前
ZZZZ发布了新的文献求助10
18秒前
18秒前
一朵会长树的花完成签到,获得积分10
19秒前
FashionBoy应助123采纳,获得10
19秒前
conghuang完成签到,获得积分10
19秒前
arrow13发布了新的文献求助10
19秒前
21秒前
科研通AI5应助Tian采纳,获得10
21秒前
几斗完成签到 ,获得积分10
21秒前
大个应助dmj采纳,获得10
21秒前
morning完成签到,获得积分10
22秒前
昔年完成签到 ,获得积分10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427