Fast simulation and prediction of urban pluvial floods using a deep convolutional neural network model

卷积神经网络 多雨的 大洪水 计算机科学 网格 深度学习 人工智能 梯度升压 人工神经网络 气象学 随机森林 环境科学 地质学 地理 海洋学 考古 大地测量学
作者
Yaoxing Liao,Zhaoli Wang,Xiaohong Chen,Chengguang Lai
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:624: 129945-129945 被引量:72
标识
DOI:10.1016/j.jhydrol.2023.129945
摘要

Urban pluvial floods induced by rainstorms can cause severe losses to human lives and property. Fast and accurate simulation and prediction of urban pluvial flood are of significance for disaster prevention and mitigation. However, physics-based models still experience excessive computational time when used for flood simulation and prediction. In this study, we explore a deep learning (DL) approach employing convolutional neural networks (CNN) as an alternative model to achieve fast prediction of urban floods. We first cluster a rainstorm-inundation database generated using a physics-based coupled model, then we develop a CNN model for predicting the spatial and temporal evolution of rainstorm inundation, and finally we compare the effectiveness of the CNN model with that of the coupled model and three other classical machine learning (ML) models. The results show that: 1) The inundation water depths predicted using the CNN model are close to those predicted using the coupled model, and the average PCC, MAE and RMSE metrics under a test rainstorm reach 0.983, 0.020 m and 0.086 m, respectively. 2) The CNN model reproduces well the trend of water depth in each model grid cell over time, especially for a heavily inundated grid. 3) The predicted effectiveness of the CNN model outperforms an extreme gradient boosting (XGBoost) model, followed by a multi-objective random forest (MORF) model and K-nearest neighbor (KNN) model. 4) The computational speed of the CNN model is extremely fast. The model can simulate inundation water depth with a spatial resolution of 8 m by 8 m (about 74 km2) and a temporal resolution of 30 min for a 6-hour lead time within 12 s, which is 600 times faster than that of a coupled model. We confirm that the CNN model with clustering method is a powerful surrogate model for fast simulation of urban pluvial flood, providing an important reference for the use of DL in early warning and mitigation in relation to urban flood disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助一一采纳,获得10
1秒前
炙热的雪糕完成签到,获得积分10
1秒前
2秒前
心心0521发布了新的文献求助10
4秒前
pluto应助刘济源采纳,获得10
4秒前
FIN应助15采纳,获得10
4秒前
内向士萧发布了新的文献求助10
5秒前
abcdulla777完成签到,获得积分20
5秒前
6秒前
SYLH应助元狩采纳,获得10
7秒前
DUANYALI完成签到,获得积分10
7秒前
10秒前
马玲完成签到,获得积分10
10秒前
10秒前
11秒前
iwwwwwn完成签到,获得积分20
11秒前
123发布了新的文献求助10
11秒前
15完成签到,获得积分10
13秒前
啊露发布了新的文献求助10
14秒前
可乐发布了新的文献求助10
15秒前
15秒前
科研通AI5应助iwwwwwn采纳,获得10
17秒前
18秒前
18秒前
酷波er应助htWu采纳,获得10
20秒前
虚拟的惜筠发布了新的文献求助150
22秒前
烟花应助LONG采纳,获得10
22秒前
粗心的易云完成签到 ,获得积分10
22秒前
22秒前
传奇3应助123采纳,获得30
23秒前
Yuying发布了新的文献求助10
24秒前
也曦完成签到 ,获得积分20
26秒前
26秒前
Saman发布了新的文献求助10
27秒前
29秒前
大个应助wuxunxun2015采纳,获得10
30秒前
31秒前
xdy完成签到 ,获得积分10
32秒前
张楠完成签到,获得积分10
32秒前
深情安青应助Yuying采纳,获得10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783