Fast simulation and prediction of urban pluvial floods using a deep convolutional neural network model

卷积神经网络 多雨的 大洪水 计算机科学 网格 深度学习 人工智能 梯度升压 人工神经网络 气象学 随机森林 地质学 地理 海洋学 考古 大地测量学
作者
Yiyi Liao,Zhaoli Wang,Xiaohong Chen,Zhaoli Wang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:624: 129945-129945 被引量:36
标识
DOI:10.1016/j.jhydrol.2023.129945
摘要

Urban pluvial floods induced by rainstorms can cause severe losses to human lives and property. Fast and accurate simulation and prediction of urban pluvial flood are of significance for disaster prevention and mitigation. However, physics-based models still experience excessive computational time when used for flood simulation and prediction. In this study, we explore a deep learning (DL) approach employing convolutional neural networks (CNN) as an alternative model to achieve fast prediction of urban floods. We first cluster a rainstorm-inundation database generated using a physics-based coupled model, then we develop a CNN model for predicting the spatial and temporal evolution of rainstorm inundation, and finally we compare the effectiveness of the CNN model with that of the coupled model and three other classical machine learning (ML) models. The results show that: 1) The inundation water depths predicted using the CNN model are close to those predicted using the coupled model, and the average PCC, MAE and RMSE metrics under a test rainstorm reach 0.983, 0.020 m and 0.086 m, respectively. 2) The CNN model reproduces well the trend of water depth in each model grid cell over time, especially for a heavily inundated grid. 3) The predicted effectiveness of the CNN model outperforms an extreme gradient boosting (XGBoost) model, followed by a multi-objective random forest (MORF) model and K-nearest neighbor (KNN) model. 4) The computational speed of the CNN model is extremely fast. The model can simulate inundation water depth with a spatial resolution of 8 m by 8 m (about 74 km2) and a temporal resolution of 30 min for a 6-hour lead time within 12 s, which is 600 times faster than that of a coupled model. We confirm that the CNN model with clustering method is a powerful surrogate model for fast simulation of urban pluvial flood, providing an important reference for the use of DL in early warning and mitigation in relation to urban flood disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助橖子小姐采纳,获得10
刚刚
lihongchi发布了新的文献求助10
1秒前
大腿弟完成签到,获得积分10
2秒前
慕青应助hai采纳,获得10
3秒前
句号发布了新的文献求助50
3秒前
一生所爱完成签到,获得积分10
4秒前
5秒前
Doki发布了新的文献求助10
5秒前
Junex发布了新的文献求助10
6秒前
王利完成签到,获得积分10
6秒前
董家小生完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
激动的士萧完成签到,获得积分10
11秒前
Gatita完成签到 ,获得积分10
11秒前
123发布了新的文献求助10
11秒前
想自由发布了新的文献求助10
11秒前
汪天问完成签到,获得积分10
12秒前
Alberto完成签到,获得积分10
12秒前
烟花应助秋名山流川枫采纳,获得10
12秒前
科研通AI2S应助STR采纳,获得10
12秒前
ll完成签到,获得积分20
12秒前
迷路又菱完成签到,获得积分10
12秒前
cx211发布了新的文献求助10
13秒前
WeMeH完成签到 ,获得积分20
13秒前
15秒前
科研通AI2S应助大胆的不斜采纳,获得10
16秒前
汪天问发布了新的文献求助10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得30
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
Accepted应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803043
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302778
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237