Adaptive Kalman filter with LSTM network assistance for abnormal measurements

卡尔曼滤波器 计算机科学 噪音(视频) 协方差 滤波器(信号处理) 自适应滤波器 控制理论(社会学) 适应性 人工智能 算法 数学 计算机视觉 统计 控制(管理) 生态学 图像(数学) 生物
作者
Shu Yin,Peng Li,Xinxing Gu,Xusheng Yang,Yu Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 075113-075113
标识
DOI:10.1088/1361-6501/ad404f
摘要

Abstract A classic state estimation method, the Kalman filter integrates prior information, system dynamics models, and measurement data to achieve posterior state estimations. However, measurements often encounter various unknown disturbances, leading to abnormal or inaccurate measurements and subsequently impacting the performance of Kalman filtering. In response to this challenge, this paper introduces a novel adaptive Kalman filter approach aided by posterior state estimations using the Long short-term memory (LSTM) networks. The proposed method begins by utilizing prior residuals to construct a chi-square distribution model, which facilitates the detection of abnormal measurements within data. Upon identifying abnormal measurements, an LSTM network is employed to generate alternative predictive measurements, replacing the original inaccurate measurement. This approach enhances the model’s capability to handle complex relationship and measurement uncertainties and improves filtering estimation accuracy. A noise covariance adjustment method is introduced in extreme cases where alternative predictive measurements alone are insufficient for filter requirements. This method mitigates the adverse effects of abnormal measurements on posterior estimation. Throughout the entire adaptive assistance process involving the LSTM network, deep learning maintains a stable structure of the filter while enhancing adaptability. This strategy ensures the filter’s resilience in dynamic environments with unknown factors by providing predicted measurements conforming to the chi-square distribution and corresponding measurement noise covariance. Ultimately, the efficacy of the proposed algorithm is validated through simulations and experiments involving vehicle positioning with inertial sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东邪西毒加任我行完成签到,获得积分10
刚刚
标致的方盒完成签到,获得积分10
刚刚
刚刚
水果完成签到,获得积分10
刚刚
刚刚
不吃芹菜完成签到,获得积分10
刚刚
格子完成签到,获得积分10
1秒前
2秒前
neo完成签到,获得积分10
2秒前
111完成签到 ,获得积分10
2秒前
Ava应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
张馨元发布了新的文献求助10
4秒前
dxs完成签到,获得积分10
4秒前
QQLL完成签到,获得积分10
4秒前
努力完成签到,获得积分10
4秒前
jinyu完成签到,获得积分10
4秒前
Paul完成签到,获得积分10
5秒前
SYLH应助细腻的仙人掌采纳,获得10
5秒前
煜钧完成签到,获得积分10
5秒前
依克完成签到,获得积分10
5秒前
非对称转录完成签到,获得积分10
5秒前
Anonymous完成签到,获得积分10
6秒前
忐忑的黑猫完成签到,获得积分10
6秒前
joe完成签到 ,获得积分0
7秒前
Hezam发布了新的文献求助10
7秒前
8秒前
玩命的小虾米完成签到,获得积分10
9秒前
银角大王完成签到,获得积分10
9秒前
john完成签到,获得积分10
9秒前
Wangying完成签到,获得积分10
9秒前
烛畔旧盟完成签到,获得积分10
10秒前
科研通AI2S应助FFFFF采纳,获得10
10秒前
11秒前
喜悦跳跳糖应助nml采纳,获得10
12秒前
贱小贱完成签到,获得积分10
13秒前
立冬完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450543
求助须知:如何正确求助?哪些是违规求助? 3046046
关于积分的说明 9004222
捐赠科研通 2734753
什么是DOI,文献DOI怎么找? 1500107
科研通“疑难数据库(出版商)”最低求助积分说明 693369
邀请新用户注册赠送积分活动 691542