118. Single-cell RNA sequencing and co-occurring cellular state analysis of high-grade serous ovarian cancer

浆液性卵巢癌 浆液性液体 卵巢癌 细胞 癌症研究 计算生物学 癌症 生物 肿瘤科 医学 遗传学 生物化学
作者
Nicholas P. Semenkovich,Emilee N. Kotnik,Elena Lomonosova,Abul Usmani,Andrew Chen,Faridi Qaium,David G. Mutch,Aadel A. Chaudhuri,Katherine C. Fuh
出处
期刊:Cancer genetics [Elsevier]
卷期号:268-269: 38-38
标识
DOI:10.1016/j.cancergen.2022.10.121
摘要

High-grade serous carcinoma (HGSC) is the most lethal subtype of ovarian cancer, and a majority of patients are diagnosed at advanced stages. One standard-of-care is neoadjuvant chemotherapy followed by cytoreductive surgery, however up to 80% of HGSC patients develop recurrent disease. There exists a critical need to better understand the features of this tumor microenvironment that may highlight potential therapeutic targets, help stratify chemotherapy responders from non-responders, and uncover novel cell states that may serve as prognostic or predictive biomarkers. We obtained multiple biopsies from five patients with advanced-stage HGSC, both pre- and post-treatment, and analyzed these samples using single-cell RNAseq. We identified 20 distinct transcriptional clusters of cells, including a well-defined tumor subset enriched for EPCAM and KRT8. We annotated each cluster using known marker genes, and additionally validated these data through genome-wide copy number and developmental maturity analyses. We then performed transcriptome deconvolution to identify co-occurring transcriptional states using EcoTyper. We then performed bulk RNAseq on paired pre- and post-treatment tumor biopsies from 23 HGSC patients. Applying our fingerprints of ecotypes from the scRNA-seq data, we identified multiple distinct transcriptional states within the pre- and post-treatment HGSC tumor microenvironment, which were enriched for distinct co-occurring states comprised of multiple immunologic lineages, including CD4 T and NK cell states. We plan to validate these ecotypes using spatial transcriptomics and compare clinical outcomes across transcriptional states to determine the potential prognostic or predictive implications of our discoveries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助ll采纳,获得10
刚刚
小二郎应助悲惨雪糕W采纳,获得10
1秒前
枫叶应助时尚东蒽采纳,获得10
1秒前
小可发布了新的文献求助10
2秒前
打打应助杰青采纳,获得10
2秒前
轩轩发布了新的文献求助10
2秒前
琉璃发布了新的文献求助10
3秒前
小科完成签到,获得积分10
3秒前
郜以寒发布了新的文献求助10
5秒前
7秒前
ll完成签到,获得积分10
8秒前
笑点低怀寒完成签到,获得积分10
9秒前
愉快的小鸽子完成签到,获得积分10
9秒前
桃花源的瓶起子完成签到,获得积分10
10秒前
李hk完成签到,获得积分10
11秒前
11秒前
郜以寒完成签到,获得积分10
12秒前
12秒前
PangSir发布了新的文献求助80
13秒前
13秒前
14秒前
15秒前
上官若男应助轩轩采纳,获得10
15秒前
lixiangrui110完成签到,获得积分10
16秒前
PXD1986356457完成签到,获得积分10
17秒前
一颗馒头完成签到,获得积分10
18秒前
JIANYOUFU完成签到,获得积分10
18秒前
金鱼发布了新的文献求助10
18秒前
苏甜发布了新的文献求助10
18秒前
小底发布了新的文献求助10
19秒前
鳗鱼鞋垫发布了新的文献求助10
20秒前
CAST1347发布了新的文献求助10
20秒前
狂野悲关注了科研通微信公众号
24秒前
25秒前
田様应助阿飞采纳,获得10
26秒前
28秒前
赘婿应助鳗鱼鞋垫采纳,获得10
30秒前
快乐的废物完成签到,获得积分10
35秒前
Ww完成签到,获得积分10
35秒前
英姑应助含糊的皮卡丘采纳,获得30
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441499
求助须知:如何正确求助?哪些是违规求助? 3038123
关于积分的说明 8970625
捐赠科研通 2726409
什么是DOI,文献DOI怎么找? 1495471
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688212