Dynamic allocation of human resources: case study in the metal 4.0 manufacturing industry

灵活性(工程) 机械加工 计算机科学 生产(经济) 任务(项目管理) 约束(计算机辅助设计) 数学优化 工业工程 操作员(生物学) 动态规划 工程类 算法 机械工程 系统工程 数学 转录因子 基因 统计 宏观经济学 抑制因子 经济 化学 生物化学
作者
M Beauchemin,Marc-André Ménard,Jonathan Gaudreault,Nadia Lehoux,Stéphane Agnard,Claude-Guy Quimper
出处
期刊:International Journal of Production Research [Informa]
卷期号:61 (20): 6891-6907 被引量:3
标识
DOI:10.1080/00207543.2022.2139002
摘要

AbstractIndustry 4.0 concepts make it possible to rethink human resources allocation, even for more traditional environments like metal machining. While parts machining on Computer Numerical Control (CNC) machines is automated, some manual tasks must still be executed by operators. The current approach is typically that operators are statically allocated to one or many machines. This causes avoidable bottlenecks. We propose an optimisation model to dynamically assign tasks to the operators with the objective of minimising production delays. Three different scenarios are compared; one representing the current widely used static allocation method and two others that allow more flexibility in the operators' allocation. The dynamic task assignment problem is solved using a constraint programming model. The model was applied to a case study from a high-precision metal manufacturing job shop. Experimental results show that switching from a static allocation to a dynamic one reduces by 76% the average production delays caused by human operators. Supposing more versatile operators under the dynamic allocation leads to further improvements.KEYWORDS: Industry 4.0job shop schedulinghuman resource allocationreal-time schedulingmetal parts machining AcknowledgementsThe authors wish to acknowledge APN Global for their implication in the project by contributing their time and data. A special thanks go to Keven Langlois for his time and knowledge, especially when extracting industrial data. The authors have obtained any necessary permissions for the reuse of this material "Beauchemin, Maude, "Dynamic Allocation of Operators in a Hybrid Human-Machine 4.0 Context" (2022). Theses and dissertations. https://corpus.ulaval.ca/entities/publication/cba35c96-5fdd-4465-8439-23f718f8ef45".Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementDue to the nature of this research, participants of this study did not agree to their data being shared publicly, so supporting data is not available.Additional informationFundingThis work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) [grant number 561168–20].Notes on contributorsMaude BeaucheminMaude Beauchemin is an M.Sc. candidate in the Department of Computer Science, Laval University, Canada. Her research interests include optimisation, simulation, operational research, industrial applications.Marc-André MénardMarc-André Ménard is a research professional associated with the CRISI, FORAC and IID. He obtained his PhD from Laval University in 2021. His research interests include artificial intelligence, optimisation, planning, scheduling and operational research.Jonathan GaudreaultJonathan Gaudreault is a professor in the Department of Computer Science, Laval University, Canada, and the director of the CRISI Research Consortium for Industry 4.0 Systems Engineering. His research interests include artificial intelligence-based decision support systems, planning and scheduling issues, operational research and optimisation, simulation, industrial applications.Nadia LehouxNadia Lehoux is a professor in Industrial Engineering at Laval University, Canada. Her research interests focus on operations research for logistics and operations planning problems.Stéphane AgnardStéphane Agnard is the R&D Director | Industry 4.0 at APN Global. He obtained his M.Eng. from the École de Technologie Supérieure University in 2013. Recipient of the Governor General's Academic Medal, he has contributed to many research projects over the years by always building bridges between the industrial and the academic worlds.Claude-Guy QuimperClaude-Guy Quimper is a professor in the Department of Computer Science, Laval University, Canada. He obtained his PhD from the University of Waterloo. His research interests include satisfaction and optimisation of combinatorial problems using constraint programming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小青新发布了新的文献求助20
1秒前
zy完成签到,获得积分10
3秒前
3秒前
谨慕轩发布了新的文献求助10
3秒前
靜心发布了新的文献求助10
4秒前
wlnhyF发布了新的文献求助10
7秒前
7秒前
稳如老狗发布了新的文献求助10
9秒前
一二完成签到,获得积分10
11秒前
不配.应助谨慕轩采纳,获得10
11秒前
王兴雨完成签到,获得积分10
13秒前
13秒前
16秒前
陈棋清发布了新的文献求助10
17秒前
善学以致用应助刘哔采纳,获得10
17秒前
17秒前
瘦瘦达完成签到,获得积分10
18秒前
18秒前
18秒前
科研通AI2S应助稳如老狗采纳,获得10
19秒前
弘木发布了新的文献求助10
19秒前
20秒前
collapsar1应助靜心采纳,获得10
22秒前
李大姐发布了新的文献求助10
23秒前
跳跃梦岚发布了新的文献求助20
24秒前
弘木完成签到,获得积分10
25秒前
25秒前
25秒前
哈利波特发布了新的文献求助10
25秒前
nns完成签到,获得积分10
27秒前
hqq2312发布了新的文献求助10
28秒前
顾北发布了新的文献求助10
28秒前
陈棋清完成签到,获得积分10
29秒前
liyingyan发布了新的文献求助30
29秒前
30秒前
wulalala完成签到,获得积分10
32秒前
行隐应助rossliyi采纳,获得10
34秒前
33097完成签到,获得积分10
36秒前
雪白问兰应助Yan采纳,获得10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136281
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7780828
捐赠科研通 2443293
什么是DOI,文献DOI怎么找? 1299081
科研通“疑难数据库(出版商)”最低求助积分说明 625325
版权声明 600905