Differential Diagnosis of Pleural Effusion Using Machine Learning

医学 接收机工作特性 支持向量机 特征选择 人工智能 随机森林 机器学习 交叉验证 胸腔积液 腺苷脱氨酶 胸腔穿刺术 梯度升压 逻辑回归 决策树 放射科 计算机科学 内科学 腺苷
作者
Na Young Kim,Boa Jang,Kang-Mo Gu,Young Sik Park,Young-Gon Kim,Jaeyoung Cho
出处
期刊:Annals of the American Thoracic Society [American Thoracic Society]
卷期号:21 (2): 211-217 被引量:2
标识
DOI:10.1513/annalsats.202305-410oc
摘要

Rationale: Differential diagnosis of pleural effusion is challenging in clinical practice. Objectives: We aimed to develop a machine learning model to classify the five common causes of pleural effusions. Methods: This retrospective study collected 49 features from clinical information, blood, and pleural fluid of adult patients who underwent diagnostic thoracentesis between October 2013 and December 2018. Pleural effusions were classified into the following five categories: transudative, malignant, parapneumonic, tuberculous, and other. The performance of five different classifiers, including multinomial logistic regression, support vector machine, random forest, extreme gradient boosting, and light gradient boosting machine (LGB), was evaluated in terms of accuracy and area under the receiver operating characteristic curve through fivefold cross-validation. Hybrid feature selection was applied to determine the most relevant features for classifying pleural effusion. Results: We analyzed 2,253 patients (training set, n = 1,459; validation set, n = 365; extra-validation set, n = 429) and found that the LGB model achieved the best performance in both validation and extra-validation sets. After feature selection, the accuracy of the LGB model with the selected 18 features was equivalent to that with all 49 features (mean ± standard deviation): 0.818 ± 0.012 and 0.777 ± 0.007 in the validation and extra-validation sets, respectively. The model's mean area under the receiver operating characteristic curve was as high as 0.930 ± 0.042 and 0.916 ± 0.044 in the validation and extra-validation sets, respectively. In our model, pleural lactate dehydrogenase, protein, and adenosine deaminase levels were the most important factors for classifying pleural effusions. Conclusions: Our LGB model showed satisfactory performance for differential diagnosis of the common causes of pleural effusions. This model could provide clinicians with valuable information regarding the major differential diagnoses of pleural diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆南蕾发布了新的文献求助10
2秒前
2秒前
liu123发布了新的文献求助10
4秒前
4秒前
ll应助linmo采纳,获得10
5秒前
123发布了新的文献求助10
5秒前
卢静静完成签到,获得积分10
6秒前
7秒前
7秒前
gz000111完成签到,获得积分10
9秒前
打打应助liu123采纳,获得10
9秒前
10秒前
11秒前
YamDaamCaa应助斐然采纳,获得30
11秒前
da_line应助渊思采纳,获得10
11秒前
12秒前
da_line应助江江采纳,获得10
12秒前
登山人完成签到,获得积分10
13秒前
Rondab应助虚度30年采纳,获得10
15秒前
Pt发布了新的文献求助10
15秒前
愉快之槐完成签到,获得积分10
15秒前
tpl完成签到,获得积分10
16秒前
请叫我风吹麦浪应助青岩采纳,获得10
17秒前
CaoJing完成签到 ,获得积分10
18秒前
共享精神应助wbn1212采纳,获得10
18秒前
XU发布了新的文献求助30
19秒前
HHHAN发布了新的文献求助10
20秒前
乖猫要努力应助清脆南蕾采纳,获得10
22秒前
完美世界应助清脆南蕾采纳,获得10
22秒前
传奇3应助清脆南蕾采纳,获得10
22秒前
星辰大海应助清脆南蕾采纳,获得10
22秒前
CodeCraft应助清脆南蕾采纳,获得10
22秒前
22秒前
bubble完成签到 ,获得积分10
23秒前
咕噜坚果完成签到,获得积分10
24秒前
24秒前
葱葱不吃葱完成签到 ,获得积分10
25秒前
25秒前
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578