Differential Diagnosis of Pleural Effusion Using Machine Learning

医学 接收机工作特性 支持向量机 特征选择 人工智能 随机森林 机器学习 交叉验证 胸腔积液 腺苷脱氨酶 胸腔穿刺术 梯度升压 逻辑回归 决策树 放射科 计算机科学 内科学 腺苷
作者
Na Young Kim,Boa Jang,Kang-Mo Gu,Young Sik Park,Young-Gon Kim,Jaeyoung Cho
出处
期刊:Annals of the American Thoracic Society [American Thoracic Society]
卷期号:21 (2): 211-217 被引量:2
标识
DOI:10.1513/annalsats.202305-410oc
摘要

Rationale: Differential diagnosis of pleural effusion is challenging in clinical practice. Objectives: We aimed to develop a machine learning model to classify the five common causes of pleural effusions. Methods: This retrospective study collected 49 features from clinical information, blood, and pleural fluid of adult patients who underwent diagnostic thoracentesis between October 2013 and December 2018. Pleural effusions were classified into the following five categories: transudative, malignant, parapneumonic, tuberculous, and other. The performance of five different classifiers, including multinomial logistic regression, support vector machine, random forest, extreme gradient boosting, and light gradient boosting machine (LGB), was evaluated in terms of accuracy and area under the receiver operating characteristic curve through fivefold cross-validation. Hybrid feature selection was applied to determine the most relevant features for classifying pleural effusion. Results: We analyzed 2,253 patients (training set, n = 1,459; validation set, n = 365; extra-validation set, n = 429) and found that the LGB model achieved the best performance in both validation and extra-validation sets. After feature selection, the accuracy of the LGB model with the selected 18 features was equivalent to that with all 49 features (mean ± standard deviation): 0.818 ± 0.012 and 0.777 ± 0.007 in the validation and extra-validation sets, respectively. The model's mean area under the receiver operating characteristic curve was as high as 0.930 ± 0.042 and 0.916 ± 0.044 in the validation and extra-validation sets, respectively. In our model, pleural lactate dehydrogenase, protein, and adenosine deaminase levels were the most important factors for classifying pleural effusions. Conclusions: Our LGB model showed satisfactory performance for differential diagnosis of the common causes of pleural effusions. This model could provide clinicians with valuable information regarding the major differential diagnoses of pleural diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syne完成签到,获得积分10
2秒前
山楂看海完成签到,获得积分10
5秒前
法克西瓜汁完成签到,获得积分10
6秒前
Juan完成签到,获得积分10
7秒前
和谐曼凝完成签到 ,获得积分10
7秒前
8秒前
8秒前
三棱镜完成签到,获得积分10
8秒前
怕孤独的访云完成签到 ,获得积分10
9秒前
AZN完成签到,获得积分10
12秒前
12秒前
大雄发布了新的文献求助10
13秒前
小灰灰完成签到,获得积分10
15秒前
大模型应助Jovial采纳,获得10
16秒前
六仔完成签到,获得积分10
16秒前
墨墨完成签到 ,获得积分10
18秒前
蛋炒饭不加蛋完成签到,获得积分10
19秒前
Bsisoy完成签到,获得积分10
21秒前
21秒前
ngyy完成签到 ,获得积分10
22秒前
20224273完成签到 ,获得积分20
23秒前
26秒前
Jovial发布了新的文献求助10
29秒前
苹果含烟关注了科研通微信公众号
32秒前
朱诗源完成签到 ,获得积分10
33秒前
柚又完成签到 ,获得积分10
34秒前
Mt完成签到,获得积分10
34秒前
橙子abcy完成签到,获得积分10
35秒前
CAS完成签到,获得积分10
35秒前
诺亚方舟哇哈哈完成签到 ,获得积分10
36秒前
凯蒂完成签到,获得积分10
37秒前
38秒前
40秒前
。。。发布了新的文献求助10
41秒前
一个左正蹬完成签到,获得积分10
44秒前
czj完成签到,获得积分10
45秒前
大大蕾完成签到 ,获得积分10
45秒前
梓泽丘墟应助晚风吹起来采纳,获得10
45秒前
王芋圆完成签到,获得积分10
46秒前
苹果含烟发布了新的文献求助10
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162519
求助须知:如何正确求助?哪些是违规求助? 2813377
关于积分的说明 7900197
捐赠科研通 2472938
什么是DOI,文献DOI怎么找? 1316595
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175