Fabrication of versatile polyvinyl alcohol and carboxymethyl cellulose-based hydrogels for information hiding and flexible sensors: Heat-induced adjustable stiffness and transparency

自愈水凝胶 羧甲基纤维素 材料科学 聚乙烯醇 透明度(行为) 纳米技术 复合材料 化学工程 计算机科学 高分子化学 计算机安全 工程类 冶金
作者
Yuanna Sun,Fenling Shi,Ruobing Tian,Xiaoliang Zhao,Qingshan Li,Chen Song,Ying Du,Xinhai He,Jun Fu
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:253: 126950-126950 被引量:10
标识
DOI:10.1016/j.ijbiomac.2023.126950
摘要

With the growing demand for wearable electronics, designing biocompatible hydrogels that combine self-repairability, wide operating temperature and precise sensing ability offers a promising scheme. Herein, by interpenetrating naturally derived carboxymethyl cellulose (CMC) into a polyvinyl alcohol (PVA) gel matrix, a novel hydrogel is successfully developed via simple coordination with calcium chloride (CaCl2). The chelation of CMC and Ca2+ is applied as a second crosslinking mechanism to stabilize the hydrogel at relatively high temperature (95 °C). In particular, it has unique heat-induced healing behavior and unexpected tunable stiffness & transparency. Like the sea cucumber, the gel can transform between a stiffened state and a relaxed state (nearly 23 times modulated stiffness from 453 to 20 kPa) which originates from the reconstruction of the crystallites. The adjustable transparency enables the hydrogel to become an excellent information hiding material. Due to the presence of Ca2+, the hydrogels show favorable conductivity, anti-freezing and long-term stability. Based on the advantages, a self-powered sensor, where chemical energy is converted to electrical energy, is assembled for human motion detection. The low-cost, environmentally friendly strategy, at the same time, complies to the “green” chemistry concept with the full employment of the biopolymers. Therefore, the proposed hydrogel is deemed to find potential use in wearable sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜维发布了新的文献求助10
刚刚
CKJ完成签到,获得积分10
1秒前
Jasper应助酷酷铭采纳,获得10
1秒前
3秒前
3秒前
3秒前
Orange应助老实憨厚的笑笑采纳,获得10
4秒前
4秒前
5秒前
信仰g完成签到,获得积分20
6秒前
Yimim发布了新的文献求助10
6秒前
8秒前
深情安青应助yic采纳,获得10
8秒前
8秒前
8秒前
111111222333发布了新的文献求助10
8秒前
风趣的思菱完成签到,获得积分10
9秒前
9秒前
唐小江发布了新的文献求助10
10秒前
英俊的铭应助王力口乐采纳,获得10
11秒前
11秒前
无私啤酒完成签到,获得积分10
11秒前
11秒前
少年愁发布了新的文献求助10
11秒前
111发布了新的文献求助10
11秒前
李昕123发布了新的文献求助10
12秒前
13秒前
0ne222完成签到,获得积分10
13秒前
14秒前
万能图书馆应助CCC采纳,获得10
15秒前
cocolu应助ZRDJ采纳,获得10
15秒前
思源应助单向度的人采纳,获得10
15秒前
苏有朋发布了新的文献求助10
15秒前
17秒前
17秒前
Yimim完成签到,获得积分10
17秒前
唐小江完成签到,获得积分10
17秒前
我是老大应助小高采纳,获得10
18秒前
酷波er应助yaqingzi采纳,获得10
19秒前
19秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470584
求助须知:如何正确求助?哪些是违规求助? 3063615
关于积分的说明 9084626
捐赠科研通 2754092
什么是DOI,文献DOI怎么找? 1511215
邀请新用户注册赠送积分活动 698347
科研通“疑难数据库(出版商)”最低求助积分说明 698221