Attention-based deep clustering method for scRNA-seq cell type identification

聚类分析 自编码 计算机科学 降维 人工智能 稳健性(进化) 机器学习 模式识别(心理学) 数据挖掘 层次聚类 人工神经网络 生物 生物化学 基因
作者
Shenghao Li,Hui Guo,Simai Zhang,Yizhou Li,Menglong Li
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:19 (11): e1011641-e1011641 被引量:1
标识
DOI:10.1371/journal.pcbi.1011641
摘要

Single-cell sequencing (scRNA-seq) technology provides higher resolution of cellular differences than bulk RNA sequencing and reveals the heterogeneity in biological research. The analysis of scRNA-seq datasets is premised on the subpopulation assignment. When an appropriate reference is not available, such as specific marker genes and single-cell reference atlas, unsupervised clustering approaches become the predominant option. However, the inherent sparsity and high-dimensionality of scRNA-seq datasets pose specific analytical challenges to traditional clustering methods. Therefore, a various deep learning-based methods have been proposed to address these challenges. As each method improves partially, a comprehensive method needs to be proposed. In this article, we propose a novel scRNA-seq data clustering method named AttentionAE-sc (Attention fusion AutoEncoder for single-cell). Two different scRNA-seq clustering strategies are combined through an attention mechanism, that include zero-inflated negative binomial (ZINB)-based methods dealing with the impact of dropout events and graph autoencoder (GAE)-based methods relying on information from neighbors to guide the dimension reduction. Based on an iterative fusion between denoising and topological embeddings, AttentionAE-sc can easily acquire clustering-friendly cell representations that similar cells are closer in the hidden embedding. Compared with several state-of-art baseline methods, AttentionAE-sc demonstrated excellent clustering performance on 16 real scRNA-seq datasets without the need to specify the number of groups. Additionally, AttentionAE-sc learned improved cell representations and exhibited enhanced stability and robustness. Furthermore, AttentionAE-sc achieved remarkable identification in a breast cancer single-cell atlas dataset and provided valuable insights into the heterogeneity among different cell subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Green完成签到,获得积分10
刚刚
VDC发布了新的文献求助10
刚刚
克丽完成签到 ,获得积分10
1秒前
september111完成签到,获得积分10
2秒前
2秒前
3秒前
zzz发布了新的文献求助10
3秒前
神勇初瑶发布了新的文献求助20
4秒前
taojian7完成签到,获得积分10
4秒前
田様应助有机合成采纳,获得10
5秒前
Francis完成签到,获得积分10
5秒前
名丿完成签到,获得积分10
5秒前
5秒前
Ting完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
8秒前
白金之星完成签到,获得积分20
9秒前
9秒前
李杰发布了新的文献求助10
10秒前
健忘的沛蓝完成签到 ,获得积分10
11秒前
小马一家发布了新的文献求助10
12秒前
13秒前
13秒前
makabaka发布了新的文献求助10
13秒前
reading gene发布了新的文献求助10
14秒前
王梓磬发布了新的文献求助20
14秒前
Ride发布了新的文献求助10
15秒前
15秒前
15秒前
蟲先生完成签到 ,获得积分10
15秒前
yzlsci完成签到,获得积分0
16秒前
俏皮猫咪完成签到 ,获得积分10
16秒前
kento发布了新的文献求助80
17秒前
17秒前
381143发布了新的文献求助10
17秒前
18秒前
1464565388发布了新的文献求助10
18秒前
Lll发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159243
求助须知:如何正确求助?哪些是违规求助? 2810372
关于积分的说明 7887509
捐赠科研通 2469200
什么是DOI,文献DOI怎么找? 1314702
科研通“疑难数据库(出版商)”最低求助积分说明 630697
版权声明 602012