MIL-ViT: A multiple instance vision transformer for fundus image classification

计算机科学 人工智能 深度学习 特征学习 眼底(子宫) 模式识别(心理学) 代表(政治) 机器学习 医学 政治 政治学 法学 眼科
作者
Qi Bi,Xu Sun,Shuang Yu,Kai Ma,Cheng Bian,Munan Ning,Nanjun He,Yawen Huang,Yuexiang Li,Hanruo Liu,Yefeng Zheng
出处
期刊:Journal of Visual Communication and Image Representation [Elsevier]
卷期号:97: 103956-103956 被引量:16
标识
DOI:10.1016/j.jvcir.2023.103956
摘要

Despite the great success of deep learning approaches, retinal disease classification is still challenging as the early-stage pathological regions of retinal diseases may be extremely tiny and subtle, which are difficult for networks to detect. The feature representations learnt by deep learning models focusing more on the local view may lead to indiscriminative semantic-level representation. On the contrary, if they focus more on the global semantic-level, they may ignore the discerning subtle local pathological regions. To address this issue, in this paper, we propose a hybrid framework, combining the strong global semantic representation learning capability of the vision Transformer (ViT) and the excellent capacity of local representation extraction from the conventional multiple instance learning (MIL). Particularly, a multiple instance vision Transformer (MIL-ViT) is implemented, where the vanilla ViT branch and the MIL branch generate semantic probability distributions separately, and a bag consistency loss is proposed to minimize the difference between them. Moreover, a calibrated attention mechanism is developed to embed the instance representation into the bag representation in our MIL-ViT. To further improve the feature representation capability for fundus images, we pre-train the vanilla ViT on a large-scale fundus image database. The experimental results validate that the generalization capability of the model using our pre-trained weights for fundus disease diagnosis is better than the one using ImageNet pre-trained weights. Extensive experiments on four publicly available benchmarks demonstrate that our proposed MIL-ViT outperforms latest fundus image classification methods, including various deep learning models and deep MIL methods. All our source code and pre-trained models are publicly available at https://github.com/greentreeys/MIL-VT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助学业繁忙采纳,获得10
刚刚
春老头发布了新的文献求助10
2秒前
不动僧完成签到,获得积分10
2秒前
yueflyyy完成签到,获得积分10
3秒前
FL完成签到,获得积分10
4秒前
豆豆豆豆完成签到,获得积分20
4秒前
111发布了新的文献求助10
5秒前
5秒前
酷波er应助舒心的之槐采纳,获得10
6秒前
7秒前
赘婿应助GD采纳,获得10
8秒前
李健应助huanger采纳,获得10
8秒前
科研通AI5应助rzx采纳,获得10
9秒前
春老头完成签到,获得积分10
10秒前
10秒前
谦让鹏涛发布了新的文献求助10
11秒前
852应助星星采纳,获得10
12秒前
13秒前
JamesPei应助十三月的过客采纳,获得10
13秒前
13秒前
yy发布了新的文献求助10
14秒前
温梦花雨完成签到 ,获得积分10
14秒前
15秒前
15秒前
学业繁忙发布了新的文献求助10
17秒前
17秒前
17秒前
杨文海发布了新的文献求助10
17秒前
科研通AI5应助zl采纳,获得10
18秒前
18秒前
888发布了新的文献求助20
20秒前
20秒前
长江长发布了新的文献求助30
22秒前
22秒前
22秒前
24秒前
可爱的函函应助谦让鹏涛采纳,获得10
24秒前
上官若男应助韩hqf采纳,获得10
25秒前
初空月儿发布了新的文献求助10
26秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3573329
求助须知:如何正确求助?哪些是违规求助? 3143317
关于积分的说明 9451313
捐赠科研通 2844834
什么是DOI,文献DOI怎么找? 1563767
邀请新用户注册赠送积分活动 731977
科研通“疑难数据库(出版商)”最低求助积分说明 718779