大豆疫霉
生物
DNA甲基转移酶
组蛋白
组蛋白甲基转移酶
遗传学
细胞生物学
甲基转移酶
DNA
基因
甲基化
作者
Fan Zhang,Shanshan Chen,Tongshan Cui,Can Zhang,Tan Dai,Jianjun Hao,Xili Liu
标识
DOI:10.1016/j.ijbiomac.2023.127198
摘要
The DNA methyltransferase 1-associated protein (DMAP1) was initially identified as an activator of DNA methyltransferase 1 (DNMT1), a conserved eukaryotic enzyme involved in diverse molecular processes, including histone acetylation and chromatin remodeling. However, the roles and regulatory mechanisms of DMAP1 in filamentous pathogens are still largely unknown. Here, employing bioinformatic analysis, we identified PsDMAP1 in P. sojae, which features a canonical histone tail-binding domain, as the ortholog of the human DMAP1. A phylogenetic analysis of DMAP1 protein sequences across diverse eukaryotic organisms revealed the remarkable conservation and distinctiveness of oomycete DMAP1 orthologs. Homozygous knockout of PsDMAP1 resulted in the mortality of P. sojae. Furthermore, silencing of PsDMAP1 caused a pronounced reduction in mycelial growth, production of sporangia and zoospore, cystospore germination, and virulence. PsDMAP1 also played a crucial role in the response of P. sojae to reactive oxygen species (ROS) and osmotic stresses. Moreover, PsDMAP1 interacted with DNA N6-methyladenine (6 mA) methyltransferase PsDAMT1, thereby enhancing its catalytic activity and effectively regulating 6 mA abundance in P. sojae. Our findings reveal the functional importance of PsDAMP1 in the development and infection of P. sojae, and this marks the initial exploration of the novel 6 mA regulator PsDMAP1 in plant pathogens.
科研通智能强力驱动
Strongly Powered by AbleSci AI