Spectral characteristics of dissolved organic matter in Plateau Lakes: Identifying eutrophication indicators in Southwest China

富营养化 高原(数学) 中国 环境科学 有机质 溶解有机碳 生态学 海洋学 环境化学 自然地理学 地质学 地理 营养物 化学 生物 数学分析 数学 考古
作者
Yuying Guan,Gongliang Yu,Nannan Jia,Ruiming Han,Da Huo
出处
期刊:Ecological Informatics [Elsevier]
卷期号:82: 102703-102703 被引量:4
标识
DOI:10.1016/j.ecoinf.2024.102703
摘要

Dissolved organic matter (DOM) acts as a chemical intermediary between terrestrial and lacustrine ecosystems and significantly affects the structure and function of lakes. The trophic state of lakes, driven by terrestrial input and phytoplankton biomass, alters the optical properties of DOM. From November 2018 to July 2019, we collected 119 water samples from the Erhai watershed and analyzed them using UV–Vis and EEM-PARAFAC to study the optical properties of DOM in relation to the trophic conditions. Our result indicated that the tyrosine-like protein (C1), tryptophan-like protein (C2), and humic-like compounds (C3) were among the mostly autochthonous components of the DOM. The percentage of the C3 was higher in eutrophic lakes than in mesotrophic and light-eutrophic lakes. The ultraviolet absorption coefficients at 254 nm (aCDOM(254)) and fluorescence intensity at 355 nm (Fn(355)) increased significantly (p < 0.01) with an increased trophic state. Our findings indicate that the influence of nutrients and environmental factors (such as pH and water temperature) on DOM varies with the trophic state. The development of novel predictive models for trophic state assessment was largely based on the significant correlations between TSI and aCDOM(254) (R2 = 0.762, p < 0.01) and Fn(355) (R2 = 0.705, p < 0.01). This neural network model facilitates the creation of a novel fast assessment tool by highlighting the connection between DOM features and the trophic state index. By enabling swift experimental measurements, this model offers a high-resolution monitoring solution for tracking the eutrophication of plateau lakes and rivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助xzy采纳,获得10
1秒前
坚强的皮皮虾完成签到,获得积分10
2秒前
大个应助小草采纳,获得10
3秒前
5秒前
SciGPT应助言叶采纳,获得10
6秒前
阿呆完成签到,获得积分10
7秒前
奥利安费发布了新的文献求助10
9秒前
9秒前
天天快乐应助Silence采纳,获得10
9秒前
Lxr完成签到 ,获得积分10
10秒前
Yolenders完成签到 ,获得积分10
11秒前
11秒前
快乐滑板应助r93527005采纳,获得10
11秒前
春和景明完成签到,获得积分10
11秒前
黄了红几完成签到,获得积分10
11秒前
852应助tkdzjr12345采纳,获得10
12秒前
xzy发布了新的文献求助10
13秒前
13秒前
14秒前
木木完成签到,获得积分10
15秒前
科研通AI2S应助加菲丰丰采纳,获得10
15秒前
bkagyin应助嘟嘟采纳,获得10
16秒前
16秒前
带领大家发布了新的文献求助10
17秒前
18秒前
言叶发布了新的文献求助10
18秒前
现在就飞走完成签到,获得积分10
19秒前
junio发布了新的文献求助10
20秒前
木子发布了新的文献求助10
21秒前
22秒前
甜味白开水完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
24秒前
Trevino应助Wraith采纳,获得10
24秒前
24秒前
25秒前
25秒前
完美世界应助Monica采纳,获得10
26秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392050
求助须知:如何正确求助?哪些是违规求助? 3002923
关于积分的说明 8806452
捐赠科研通 2689710
什么是DOI,文献DOI怎么找? 1473183
科研通“疑难数据库(出版商)”最低求助积分说明 681447
邀请新用户注册赠送积分活动 674292