已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Human-Centric Multimodal Machine Learning: Recent Advances and Testbed on AI-Based Recruitment

计算机科学 利用 试验台 透明度(行为) 人工智能 机器学习 过程(计算) 数据科学 计算机安全 万维网 操作系统
作者
Alejandro Peña,Ignacio Serna,Aythami Morales,Julián Fiérrez,Alfonso Ortega,Ainhoa Herrarte Sánchez,Manuel Alcántara Saéz,Javier Ortega-García
出处
期刊:SN computer science [Springer Nature]
卷期号:4 (5) 被引量:22
标识
DOI:10.1007/s42979-023-01733-0
摘要

The presence of decision-making algorithms in society is rapidly increasing nowadays, while concerns about their transparency and the possibility of these algorithms becoming new sources of discrimination are arising. There is a certain consensus about the need to develop AI applications with a Human-Centric approach. Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes. All these four Human-Centric requirements are closely related to each other. With the aim of studying how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data, we propose a fictitious case study focused on automated recruitment: FairCVtest. We train automatic recruitment algorithms using a set of multimodal synthetic profiles including image, text, and structured data, which are consciously scored with gender and racial biases. FairCVtest shows the capacity of the Artificial Intelligence (AI) behind automatic recruitment tools built this way (a common practice in many other application scenarios beyond recruitment) to extract sensitive information from unstructured data and exploit it in combination to data biases in undesirable (unfair) ways. We present an overview of recent works developing techniques capable of removing sensitive information and biases from the decision-making process of deep learning architectures, as well as commonly used databases for fairness research in AI. We demonstrate how learning approaches developed to guarantee privacy in latent spaces can lead to unbiased and fair automatic decision-making process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助showmaker采纳,获得10
刚刚
有只小狗发布了新的文献求助10
3秒前
3秒前
zoey发布了新的文献求助20
7秒前
kenken_lou完成签到,获得积分10
8秒前
大个应助飞羽采纳,获得10
8秒前
8秒前
Ava应助Jasmine采纳,获得10
9秒前
11秒前
jinmuna完成签到,获得积分10
11秒前
无花果应助kkjl采纳,获得10
14秒前
赘婿应助陈腿毛采纳,获得10
16秒前
16秒前
Jasper应助DDD采纳,获得10
18秒前
爱静静应助快乐半山采纳,获得10
18秒前
双黄应助夏炖鱿鱼采纳,获得20
22秒前
nenoaowu发布了新的文献求助30
24秒前
25秒前
领导范儿应助KYT采纳,获得10
26秒前
小二郎应助单薄的如之采纳,获得10
26秒前
26秒前
28秒前
程院发布了新的文献求助10
29秒前
30秒前
31秒前
从容芮应助勿欲论比采纳,获得10
32秒前
32秒前
赘婿应助Dice°采纳,获得10
32秒前
轻松的采柳完成签到 ,获得积分10
32秒前
我爱螺蛳粉完成签到 ,获得积分10
34秒前
哈密发布了新的文献求助10
35秒前
Billy应助科研通管家采纳,获得30
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
双黄应助科研通管家采纳,获得10
37秒前
烟花应助科研通管家采纳,获得10
37秒前
37秒前
研友_VZG7GZ应助科研通管家采纳,获得10
37秒前
37秒前
1234567890发布了新的文献求助10
38秒前
怕黑的山彤完成签到 ,获得积分10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314174
求助须知:如何正确求助?哪些是违规求助? 2946559
关于积分的说明 8530555
捐赠科研通 2622218
什么是DOI,文献DOI怎么找? 1434412
科研通“疑难数据库(出版商)”最低求助积分说明 665277
邀请新用户注册赠送积分活动 650838