Deep learning and radiomics analysis for prediction of placenta invasion based on T2WI

无线电技术 列线图 胎盘 磁共振成像 医学 Lasso(编程语言) 人工智能 深度学习 计算机科学 产科 机器学习 怀孕 放射科 胎儿 肿瘤科 生物 万维网 遗传学
作者
Qian Shao,Rongrong Xuan,Yutao Wang,Jian Xu,Menglin Ouyang,Caoqian Yin,Wei Jin
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:18 (5): 6198-6215 被引量:16
标识
DOI:10.3934/mbe.2021310
摘要

The purpose of this study was to explore whether the Nomogram, which was constructed by combining the Deep learning and Radiomic features of T2-weighted MR images with Clinical factors (NDRC), could accurately predict placenta invasion. This retrospective study included 72 pregnant women with pathologically confirmed placenta invasion and 40 pregnant women with normal placenta. After 24 gestational weeks, all participants underwent magnetic resonance imaging. The uterus and placenta regions were segmented in magnetic resonance images on sagittal T2WI. Ninety-three radiomics features were extracted from the placenta region, and 128 deep features were extracted from the uterus region using a deep neural network. The least absolute shrinkage and selection operator (LASSO) algorithm was used to filter these 221 features and to form the combined signature. Then the combined signature (CS) and clinical factors were combined to construct a nomogram. The accuracy, sensitivity, specificity and AUC of the nomogram were compared with four machine learning methods. The model NDRC was trained on the dataset of 78 pregnant women in the training cohort. Finally, the model NDRC was compared with four machine learning methods on the independent validation cohort of 34 pregnant women. The results showed that the prediction accuracy, sensitivity, specificity and AUC of the NDRC model were 0.941, 0.952, 0.923 and 0.985 respectively, which outperforms the traditional machine learning methods which rely on radiomics features and deep learning features alone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
_Forelsket_完成签到,获得积分10
刚刚
dreamland完成签到,获得积分10
1秒前
源源完成签到,获得积分10
1秒前
逐徒发布了新的文献求助10
1秒前
kk完成签到,获得积分20
2秒前
动听月饼完成签到,获得积分10
2秒前
fujun完成签到,获得积分10
3秒前
Orange应助334niubi666采纳,获得10
3秒前
czwu完成签到,获得积分10
5秒前
zjh关闭了zjh文献求助
6秒前
8秒前
10秒前
汤汤完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
smile完成签到,获得积分10
13秒前
江桥完成签到,获得积分10
13秒前
淡然水绿发布了新的文献求助10
13秒前
无情代芹完成签到 ,获得积分10
14秒前
14秒前
Junehe发布了新的文献求助10
14秒前
夏大雨发布了新的文献求助10
15秒前
杳鸢应助LmaPN7采纳,获得20
16秒前
加油应助hkh采纳,获得10
16秒前
16秒前
小蘑菇应助hkh采纳,获得10
16秒前
田成风发布了新的文献求助10
17秒前
334niubi666发布了新的文献求助10
17秒前
英俊的铭应助蓝天采纳,获得10
17秒前
夏叶完成签到,获得积分10
18秒前
个性的紫菜应助fountainli采纳,获得30
19秒前
充电宝应助DDIAO采纳,获得10
20秒前
hh发布了新的文献求助10
20秒前
研友_LwlAgn发布了新的文献求助10
20秒前
甜甜玫瑰应助卯一采纳,获得10
20秒前
Junehe完成签到,获得积分10
21秒前
悦耳的绿蕊完成签到,获得积分10
22秒前
Happy完成签到 ,获得积分10
22秒前
哈尼完成签到,获得积分10
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308488
求助须知:如何正确求助?哪些是违规求助? 2941822
关于积分的说明 8506015
捐赠科研通 2616798
什么是DOI,文献DOI怎么找? 1429796
科研通“疑难数据库(出版商)”最低求助积分说明 663919
邀请新用户注册赠送积分活动 649019