Fast Sparsity-Assisted Signal Decomposition With Nonconvex Enhancement for Bearing Fault Diagnosis

算法 计算机科学 脉冲(物理) 计算复杂性理论 解算器 方位(导航) 人工智能 数学优化 数学 量子力学 物理 程序设计语言
作者
Zhibin Zhao,Shibin Wang,David Wong,Wendong Wang,Ruqiang Yan,Xuefeng Chen
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2333-2344 被引量:38
标识
DOI:10.1109/tmech.2021.3103287
摘要

Sparsity-assisted signal decomposition (SASD) based on morphological component analysis (MCA) for bearing fault diagnosis has been studied in-depth. However, existing algorithms often use different combinations of representation dictionaries and priors, leading to difficult dictionary choice and high computational complexity. This article aims to develop a fast sparsity-assisted algorithm to decompose a vibration signal into discrete frequency and impulse components for bearing fault diagnosis. We introduce the morphological discrimination of discrete frequency and impulse components in time and frequency domains, respectively, for the first time. To use this morphological discrimination, we establish a fast SASD based on MCA with nonconvex enhancement. We further prove the necessary and sufficient condition to guarantee the convexity and use the majorization minimization algorithm to derive a fast solver. The proposed algorithm not only has low computational complexity, but also avoids choosing multiple dictionaries as well as underestimation of impulse features. Furthermore, an adaptive parameter selection algorithm to set parameters of our algorithm is designed for real applications. The effectiveness of fast SASD and its adaptive variant is verified by both simulation studies and bearing diagnosis cases. The source codes will be released at https://github.com/ZhaoZhibin/Fast_SASD .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助灵巧的之瑶采纳,获得10
刚刚
无影脚完成签到 ,获得积分10
2秒前
小明完成签到,获得积分10
3秒前
蓝风铃发布了新的文献求助10
4秒前
4秒前
5秒前
lalalala发布了新的文献求助10
6秒前
6秒前
樨樨完成签到,获得积分20
7秒前
桐桐应助clean采纳,获得10
7秒前
8秒前
别潜然发布了新的文献求助10
10秒前
10秒前
酷波er应助负责书竹采纳,获得10
12秒前
12秒前
jj发布了新的文献求助10
13秒前
Focus_BG完成签到,获得积分10
13秒前
xingxingwang完成签到,获得积分10
14秒前
doctor杨发布了新的文献求助10
14秒前
Jasper应助377采纳,获得10
14秒前
小蘑菇应助蓝风铃采纳,获得10
15秒前
Ophelia发布了新的文献求助10
16秒前
Hello应助zjh采纳,获得10
16秒前
19秒前
20秒前
20秒前
深情安青应助科研通管家采纳,获得10
21秒前
上官若男应助科研通管家采纳,获得10
21秒前
Jasper应助科研通管家采纳,获得10
21秒前
彭于晏应助科研通管家采纳,获得10
21秒前
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
22秒前
情怀应助WZQ采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542875
求助须知:如何正确求助?哪些是违规求助? 3120166
关于积分的说明 9341799
捐赠科研通 2818206
什么是DOI,文献DOI怎么找? 1549434
邀请新用户注册赠送积分活动 722146
科研通“疑难数据库(出版商)”最低求助积分说明 712978