化学
环己胺
组合化学
钥匙(锁)
立体化学
右美沙芬
反应中间体
有机化学
生物化学
催化作用
药理学
生态学
医学
生物
作者
Xiaofan Wu,Zedu Huang,Zexu Wang,Zhining Li,Jiaqi Wang,Juan Lin,Fen‐Er Chen
标识
DOI:10.1021/acs.joc.0c00469
摘要
(S)-1-(4-Methoxybenzyl)-1,2,3,4,5,6,7,8-octahydroisoquinoline [(S)-1-(4-methoxybenzyl)-OHIQ, (S)-1a] is a key synthetic intermediate in the industrial production of dextromethorphan, one of the most widely used over-the-counter antitussives. We report here that a new cyclohexylamine oxidase discovered by genome mining, named CHAOCCH12-C2, was able to completely deracemize 100 mM 1a under Turner's deracemization conditions to afford (S)-1a in 80% isolated yield and 99% ee at a semipreparative scale (0.4 mmol). When this biocatalytic reaction was scaled up to a gram scale (5.8 mmol), without reaction optimization (S)-1a was still isolated in 67% yield and 96% ee. The relatively higher kcat determined for CHAOCCH12-C2 was rationalized as one major factor rendering this enzyme capable of oxidizing 1a effectively at elevated substrate concentrations. Protein sequence alignment, analysis of our co-crystal structure of CHAOCCH12-C2 complexed with the product 1-(4-methoxybenzyl)-3,4,5,6,7,8-hexahydroisoquinoline [1-(4-methoxybenzyl)-HHIQ, 2a], and the structure-guided mutagenesis study together indicated L295 is one of the critical residues for this efficient enzymatic oxidation process and supported the presence of two cavities as well as a catalytically important "aromatic cage" formed by F342, Y433, and FAD. The synthetic applicability of CHAOCCH12-C2 was further underscored by the stereoselective synthesis of various enantioenriched 1-benzyl-OHIQ derivatives of potential pharmaceutical importance at a semipreparative scale.
科研通智能强力驱动
Strongly Powered by AbleSci AI