钙钛矿(结构)
工作职能
MXenes公司
材料科学
工作(物理)
碳化硅
碳化钛
接口(物质)
碳化物
纳米技术
工程物理
图层(电子)
化学工程
机械工程
复合材料
工程类
毛细管数
毛细管作用
作者
Antonio Agresti,Hanna Pazniak,Sara Pescetelli,Alessia Di Vito,Daniele Rossi,Alessandro Pecchia,Matthias Auf der Maur,A. Liedl,R. Larciprete,Денис Кузнецов,Danila Saranin,Aldo Di Carlo
出处
期刊:Nature Materials
[Springer Nature]
日期:2019-09-09
卷期号:18 (11): 1228-1234
被引量:505
标识
DOI:10.1038/s41563-019-0478-1
摘要
To improve the efficiency of perovskite solar cells, careful device design and tailored interface engineering are needed to enhance optoelectronic properties and the charge extraction process at the selective electrodes. Here, we use two-dimensional transition metal carbides (MXene Ti3C2Tx) with various termination groups (Tx) to tune the work function (WF) of the perovskite absorber and the TiO2 electron transport layer (ETL), and to engineer the perovskite/ETL interface. Ultraviolet photoemission spectroscopy measurements and density functional theory calculations show that the addition of Ti3C2Tx to halide perovskite and TiO2 layers permits the tuning of the materials’ WFs without affecting other electronic properties. Moreover, the dipole induced by the Ti3C2Tx at the perovskite/ETL interface can be used to change the band alignment between these layers. The combined action of WF tuning and interface engineering can lead to substantial performance improvements in MXene-modified perovskite solar cells, as shown by the 26% increase of power conversion efficiency and hysteresis reduction with respect to reference cells without MXene. Addition of MXenes in the halide perovskite film, in the electron transport layer and at the interface between these layers is shown to enhance the efficiency of and reduce hysteresis in perovskite solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI