HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion

全色胶片 多光谱图像 计算机科学 高光谱成像 人工智能 图像分辨率 图像融合 模式识别(心理学) 特征(语言学) 计算机视觉 特征提取 遥感 图像(数学) 地理 语言学 哲学
作者
Kun Li,Wei Zhang,Dian Yu,Xin Tian
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:188: 30-44 被引量:36
标识
DOI:10.1016/j.isprsjprs.2022.04.001
摘要

Traditional approaches mainly fuse a hyperspectral image (HSI) with a high-resolution multispectral image (MSI) to improve the spatial resolution of the HSI. However, such improvement in the spatial resolution of HSIs is still limited because the spatial resolution of MSIs remains low. To further improve the spatial resolution of HSIs, we propose HyperNet, a deep network for the fusion of HSI, MSI, and panchromatic image (PAN), which effectively injects the spatial details of an MSI and a PAN into an HSI while preserving the spectral information of the HSI. Thus, we design HyperNet on the basis of a uniform fusion strategy to solve the problem of complex fusion of three types of sources (i.e., HSI, MSI, and PAN). In particular, the spatial details of the MSI and the PAN are extracted by multiple specially designed multiscale-attention-enhance blocks in which multi-scale convolution is used to adaptively extract features from different reception fields, and two attention mechanisms are adopted to enhance the representation capability of features along the spectral and spatial dimensions, respectively. Through the capability of feature reuse and interaction in a specially designed dense-detail-insertion block, the previously extracted features are subsequently injected into the HSI according to the unidirectional feature propagation among the layers of dense connection. Finally, we construct an efficient loss function by integrating the multi-scale structural similarity index with the L1 norm, which drives HyperNet to generate high-quality results with a good balance between spatial and spectral qualities. Extensive experiments on simulated and real data sets qualitatively and quantitatively demonstrate the superiority of HyperNet over other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时衍完成签到,获得积分10
1秒前
上官若男应助lurongjun采纳,获得10
1秒前
共享精神应助tong采纳,获得10
1秒前
1秒前
lijunhao发布了新的文献求助10
1秒前
1秒前
lijshu发布了新的文献求助50
2秒前
2秒前
科目三应助Maestro_S采纳,获得10
3秒前
ODD完成签到,获得积分20
4秒前
4秒前
肖鹏完成签到,获得积分20
4秒前
Namj发布了新的文献求助10
5秒前
木头完成签到,获得积分10
6秒前
7秒前
7秒前
yongjiang应助熊猫小肿采纳,获得10
7秒前
洋洋完成签到,获得积分10
7秒前
何香稳发布了新的文献求助10
7秒前
8秒前
HightLight发布了新的文献求助10
8秒前
炙热尔烟发布了新的文献求助10
8秒前
9秒前
9秒前
copyj发布了新的文献求助10
9秒前
9秒前
11秒前
lurongjun发布了新的文献求助10
11秒前
Janisa发布了新的文献求助10
11秒前
12秒前
小涛涛发布了新的文献求助10
13秒前
丸橙完成签到,获得积分10
13秒前
weixiao发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
丸橙发布了新的文献求助10
16秒前
qqqq发布了新的文献求助10
16秒前
16秒前
dameng完成签到 ,获得积分10
16秒前
小八统治世界完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577556
求助须知:如何正确求助?哪些是违规求助? 4662649
关于积分的说明 14742832
捐赠科研通 4603346
什么是DOI,文献DOI怎么找? 2526283
邀请新用户注册赠送积分活动 1496084
关于科研通互助平台的介绍 1465546