HyperNet: A deep network for hyperspectral, multispectral, and panchromatic image fusion

全色胶片 多光谱图像 计算机科学 高光谱成像 人工智能 图像分辨率 图像融合 模式识别(心理学) 特征(语言学) 计算机视觉 特征提取 遥感 图像(数学) 地理 语言学 哲学
作者
Kun Li,Wei Zhang,Dian Yu,Xin Tian
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:188: 30-44 被引量:23
标识
DOI:10.1016/j.isprsjprs.2022.04.001
摘要

Traditional approaches mainly fuse a hyperspectral image (HSI) with a high-resolution multispectral image (MSI) to improve the spatial resolution of the HSI. However, such improvement in the spatial resolution of HSIs is still limited because the spatial resolution of MSIs remains low. To further improve the spatial resolution of HSIs, we propose HyperNet, a deep network for the fusion of HSI, MSI, and panchromatic image (PAN), which effectively injects the spatial details of an MSI and a PAN into an HSI while preserving the spectral information of the HSI. Thus, we design HyperNet on the basis of a uniform fusion strategy to solve the problem of complex fusion of three types of sources (i.e., HSI, MSI, and PAN). In particular, the spatial details of the MSI and the PAN are extracted by multiple specially designed multiscale-attention-enhance blocks in which multi-scale convolution is used to adaptively extract features from different reception fields, and two attention mechanisms are adopted to enhance the representation capability of features along the spectral and spatial dimensions, respectively. Through the capability of feature reuse and interaction in a specially designed dense-detail-insertion block, the previously extracted features are subsequently injected into the HSI according to the unidirectional feature propagation among the layers of dense connection. Finally, we construct an efficient loss function by integrating the multi-scale structural similarity index with the L1 norm, which drives HyperNet to generate high-quality results with a good balance between spatial and spectral qualities. Extensive experiments on simulated and real data sets qualitatively and quantitatively demonstrate the superiority of HyperNet over other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺顺完成签到,获得积分10
刚刚
莫妮卡卡完成签到,获得积分10
刚刚
nbing完成签到,获得积分10
1秒前
SCI发布了新的文献求助50
1秒前
小猫多鱼完成签到,获得积分10
2秒前
2秒前
2秒前
默默尔烟发布了新的文献求助10
2秒前
2秒前
2秒前
宁静致远完成签到,获得积分10
2秒前
天天快乐应助内向秋寒采纳,获得10
5秒前
sfafasfsdf完成签到,获得积分10
5秒前
5秒前
luuuuuu发布了新的文献求助10
6秒前
lai发布了新的文献求助30
6秒前
6秒前
zrk发布了新的文献求助10
6秒前
6秒前
7秒前
ZJJ完成签到,获得积分10
7秒前
花开的声音1217完成签到,获得积分10
8秒前
古药完成签到,获得积分10
9秒前
赘婿应助烟雨行舟采纳,获得10
9秒前
seal发布了新的文献求助10
10秒前
10秒前
11秒前
不吃香菜发布了新的文献求助10
11秒前
RC_Wang应助ZJJ采纳,获得10
11秒前
Chridy发布了新的文献求助10
12秒前
12秒前
asipilin完成签到,获得积分10
12秒前
鼻揩了转去应助lixoii采纳,获得20
12秒前
13秒前
万能图书馆应助Steve采纳,获得10
14秒前
14秒前
14秒前
颛颛完成签到 ,获得积分10
15秒前
不安钢铁侠完成签到,获得积分10
15秒前
学术z完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794