Conducting polymer is an important electrode material for supercapacitors because of its high initial specific capacitance. Herein, a novel nanocomposite composed of polypyrrole (PPy) film homogeneously immobilized on the pillar[5]arene functionalized reduced graphene oxide nanosheets (RGO-HP5A-PPy) was successfully prepared. RGO-HP5A induced pyrrole to polymerize on the graphene surface and the specific capacitance loss caused by PPy agglomeration was avoided. Noticeably, the specific capacitance of RGO-HP5A-PPy was up to 495 F/g at 1 A/g. Compared with pure PPy (319 F/g), the specific capacitance was increased by 55%. The specific capacitance retention of the assembled symmetric supercapacitor reached 76% after 10,000 cycles at 5 A/g. This study gave full play to the advantages of pillar[5]arene, graphene and PPy, and was expected to promote the development of supramolecular functionalized composites in energy storage.