Superplastic Air‐Dryable Graphene Hydrogels for Wet‐Press Assembly of Ultrastrong Superelastic Aerogels with Infinite Macroscale

材料科学 气凝胶 石墨烯 超塑性 微观结构 复合材料 纳米技术
作者
Hongsheng Yang,Zengling Li,Guoqiang Sun,Xiaojuan Jin,Bing Lü,Panpan Zhang,Tengyu Lin,Liangti Qu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:29 (26) 被引量:50
标识
DOI:10.1002/adfm.201901917
摘要

Abstract Highly compressible graphene‐based monoliths with excellent mechanical, electrical, and thermal properties hold great potential as multifunctional structural materials to realize the targets of energy‐efficiency, comfort, and safety for buildings, vehicles, aircrafts, etc. Unfortunately, the ultralow mechanical strength and limited macroscale have hampered their practical applications. Herein, ultrastrong superelastic graphene aerogel with infinite macroscale is obtained by a facile wet‐press assembly strategy based on the novel superplastic air‐dryable graphene hydrogel (SAGH). The SAGH with isotropic, open‐cell, and highly porous microstructure is carefully designed by a dual‐template sol–gel method. Countless SAGH “bricks” can be assembled together orderly by press to form the strongly combined wet‐press assembled graphene aerogel (WAGA) “wall” after air‐drying. The WAGA with highly oriented, dense, multiple‐arch microstructure possesses arbitrary macroscale, outstanding compressive strength (47 MPa, over 10 times higher than the best ever reported), super elasticity (>97% strain), and high conductivity (378 S m −1 ). The strong adhesion is attributed to the tightly face‐to‐face contacted graphene interfaces caused by wet‐press and air‐drying. The WAGAs prove to be excellent multifunctional structural materials in the fields of high pressure/strain sensor, tunable mechanical energy absorber, high‐performance fire‐resistance, and thermal insulation. This facile strategy is easily extended to fabricate other similar metamaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高发发布了新的文献求助10
刚刚
2秒前
思源应助赫连人杰采纳,获得50
4秒前
4秒前
大聪明发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
Ava应助SWEET采纳,获得10
8秒前
cheng发布了新的文献求助10
9秒前
上杉绘梨衣完成签到 ,获得积分10
9秒前
simpleblue发布了新的文献求助10
10秒前
Warm_Cloud完成签到 ,获得积分10
10秒前
顾矜应助淡淡的日记本采纳,获得10
11秒前
CodeCraft应助欣慰问凝采纳,获得10
12秒前
12秒前
wjw完成签到,获得积分10
13秒前
上杉绘梨衣关注了科研通微信公众号
13秒前
14秒前
公西翠萱完成签到,获得积分10
15秒前
bkpp完成签到 ,获得积分10
16秒前
16秒前
SciGPT应助里新采纳,获得10
16秒前
whims发布了新的文献求助10
16秒前
越红完成签到,获得积分10
16秒前
整齐百褶裙完成签到 ,获得积分10
19秒前
十一玮发布了新的文献求助10
19秒前
19秒前
张大恒发布了新的文献求助10
19秒前
mendicant完成签到,获得积分10
20秒前
张烤明完成签到,获得积分10
22秒前
共享精神应助积极的灵松采纳,获得10
22秒前
22秒前
summer完成签到 ,获得积分10
23秒前
24秒前
余半双完成签到,获得积分20
24秒前
25秒前
leo发布了新的文献求助10
25秒前
自由的过客完成签到,获得积分10
25秒前
十一玮完成签到,获得积分10
26秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2998344
求助须知:如何正确求助?哪些是违规求助? 2658853
关于积分的说明 7198185
捐赠科研通 2294366
什么是DOI,文献DOI怎么找? 1216640
科研通“疑难数据库(出版商)”最低求助积分说明 593560
版权声明 592904