Symbolic Regression Methods for Reinforcement Learning

计算机科学 强化学习 人工智能 机器学习 回归 符号回归 回归分析 统计 数学 遗传程序设计
作者
Jiřı́ Kubalı́k,Erik Derner,Jan Žegklitz,Robert Babuška
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 139697-139711 被引量:4
标识
DOI:10.1109/access.2021.3119000
摘要

Reinforcement learning algorithms can be used to optimally solve dynamic decision-making and control problems.With continuous-valued state and input variables, reinforcement learning algorithms must rely on function approximators to represent the value function and policy mappings.Commonly used numerical approximators, such as neural networks or basis function expansions, have two main drawbacks: they are black-box models offering no insight in the mappings learned, and they require significant trial and error tuning of their meta-parameters.In this paper, we propose a new approach to constructing smooth value functions in the form of analytic expressions by means of symbolic regression.We introduce three off-line methods for finding value functions based on a state transition model: symbolic value iteration, symbolic policy iteration, and a direct solution of the Bellman equation.The methods are illustrated on four nonlinear control problems: velocity control under friction, one-link and two-link pendulum swing-up, and magnetic manipulation.The results show that the value functions not only yield well-performing policies, but also are compact, mathematically tractable and easy to plug into other algorithms.This makes them potentially suitable for further analysis of the closed-loop system.A comparison with an alternative approach using neural networks shows that our method outperforms the neural network-based one.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chi发布了新的文献求助10
刚刚
刚刚
yf完成签到,获得积分20
刚刚
甜甜玫瑰完成签到,获得积分0
刚刚
1秒前
xyy发布了新的文献求助10
1秒前
maitiandehe完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
Pises完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
QYPANG发布了新的文献求助10
6秒前
wanci应助稳重秋寒采纳,获得10
7秒前
嘿嘿发布了新的文献求助10
7秒前
7秒前
科研通AI5应助淡然白安采纳,获得30
8秒前
9秒前
上官若男应助金不换采纳,获得10
9秒前
FashionBoy应助木秀采纳,获得10
10秒前
大模型应助小白菜采纳,获得10
10秒前
小二郎应助专注的小凡采纳,获得10
10秒前
DarkFlame发布了新的文献求助10
11秒前
纪震宇发布了新的文献求助10
12秒前
不学无墅发布了新的文献求助10
12秒前
免VVVV免发布了新的文献求助10
12秒前
13秒前
嘉星糖发布了新的文献求助10
13秒前
科研通AI2S应助真开心采纳,获得30
13秒前
caibuyaobing发布了新的文献求助10
13秒前
soso完成签到,获得积分20
13秒前
学术小迷弟完成签到 ,获得积分20
13秒前
CHENGJIAO完成签到,获得积分10
14秒前
14秒前
苍露发布了新的文献求助10
15秒前
15秒前
柳叶完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543718
求助须知:如何正确求助?哪些是违规求助? 3121033
关于积分的说明 9345352
捐赠科研通 2819128
什么是DOI,文献DOI怎么找? 1549968
邀请新用户注册赠送积分活动 722341
科研通“疑难数据库(出版商)”最低求助积分说明 713153