Cracking in-memory database index: A case study for Adaptive Radix Tree index

计算机科学 索引(排版) 根(腹足类) 树(集合论) 数据库索引 数据库 情报检索 搜索引擎索引 万维网 数学 植物 生物 数学分析
作者
Gang Wu,Yidong Song,Guodong Zhao,Wei Sun,Deqiang Han,Bo Qiao,Guoren Wang,Ye Yuan
出处
期刊:Information Systems [Elsevier]
卷期号:104: 101913-101913 被引量:1
标识
DOI:10.1016/j.is.2021.101913
摘要

Indexes provide a method to access data in databases quickly. It can improve the response speed of subsequent queries by building a complete index in advance. However, it also leads to a huge overhead of the continuous updating during creating the index. An in-memory database usually has a higher query processing performance than disk databases and is more suitable for real-time query processing. Therefore, there is an urgent need to reduce the index creation and update cost for in-memory databases. Database cracking technology is currently recognized as an effective method to reduce the index initialization time. However, conventional cracking algorithms are focused on simple column data structure rather than those complex index structures for in-memory databases. In order to show the feasibility of in-memory database index cracking and promote to future more extensive research, this paper conducted a case study on the Adaptive Radix Tree (ART), a popular tree index structure of in-memory databases. On the basis of carefully examining the ART index construction overhead, an algorithm using auxiliary data structures to crack the ART index is proposed. This makes it possible to build up an ART index step by step with incessant queries, and hence avoids the poor instant availability of a complete index which is constructed once and for all, but is time consuming. Furthermore, updating a cracking ART index is considered as well. Extensive experiments show that the average initialization time of the ART cracker index is reduced by 75%, and the query response time gradually approaches the original ART algorithm with the coming queries. • In-memory database indexes have more extensive research and application space. • Database Cracking is used as a method applied to in-memory database indexes. • The algorithm has better performance advantages under random queries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜完成签到 ,获得积分10
1秒前
xiaojcom应助朴实的煎蛋采纳,获得20
1秒前
2秒前
暴躁的马里奥完成签到,获得积分10
2秒前
GEOPYJ完成签到,获得积分20
3秒前
4秒前
22发布了新的文献求助10
4秒前
toxin37完成签到,获得积分10
7秒前
桐桐应助manstar采纳,获得10
8秒前
8秒前
调研昵称发布了新的文献求助10
9秒前
wangzai111发布了新的文献求助10
9秒前
9秒前
阿网发布了新的文献求助10
10秒前
toxin37发布了新的文献求助30
11秒前
风中作画完成签到 ,获得积分20
11秒前
SciGPT应助guajiguaji采纳,获得10
11秒前
13秒前
13秒前
13秒前
14秒前
丘比特应助adoretheall采纳,获得10
15秒前
16秒前
16秒前
高高羊完成签到,获得积分10
16秒前
17秒前
小欧发布了新的文献求助10
17秒前
18秒前
小小发布了新的文献求助10
18秒前
科研通AI2S应助老橡树采纳,获得10
18秒前
19秒前
胖奥小肥仔完成签到,获得积分10
19秒前
怕黑的丝袜完成签到,获得积分10
21秒前
Akim应助我爱蓝胖子采纳,获得10
21秒前
阿网完成签到,获得积分10
21秒前
manstar发布了新的文献求助10
22秒前
22秒前
23秒前
Owen应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919