Dispersal abilities favor commensalism in animal-plant interactions under climate change

生物扩散 生态学 栖息地 气候变化 生物 利基 适应(眼睛) 航程(航空) 生物成分 种子散布 非生物成分 人口 材料科学 人口学 神经科学 社会学 复合材料
作者
Priscila Lemes,Fabiana Gonçalves Barbosa,Babak Naimi,Miguel B. Araújo
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:835: 155157-155157 被引量:13
标识
DOI:10.1016/j.scitotenv.2022.155157
摘要

Scientists still poorly understand how biotic interactions and dispersal limitation jointly interact and affect the ability of species to track suitable habitats under climate change. Here, we examine how animal-plant interactions and dispersal limitations might affect the responses of Brazil nut-dependent frogs facing projected climate change. Using ecological niche modelling and dispersal simulations, we forecast the future distributions of the Brazil nut tree and three commensalist frog species over time (2030, 2050, 2070, and 2090) in the regional rivalry (SSP370) scenario that includes great challenges to mitigation and adaptation. With the exception of one species, projections point to a decrease in suitable habitats of up to 40.6%. For frog species with potential reductions of co-occurrence areas, this is expected to reduce up to 23.8% of suitable areas for binomial animal-plant relationships. Even so, biotic interactions should not be lost over time. Species will depend on their own dispersal abilities to reach analogous climates in the future for maintaining ecological and evolutionary processes associated with commensal taxa. However, ecological and evolutionary processes associated with commensal taxa should be maintained in accordance with their own dispersal ability. When dispersal limitation is included in the models, the suitable range of all three frog species is reduced considerably by the end of the century. This highlights the importance of dispersal limitation inclusion for forecasting future distribution ranges when biotic interactions matter.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jenny应助xiuxiu_27采纳,获得10
刚刚
刚刚
麻辣爆锅完成签到,获得积分10
刚刚
刚刚
qq小兵发布了新的文献求助10
刚刚
Owen应助littlewhite采纳,获得30
1秒前
3137874883完成签到,获得积分20
1秒前
1111完成签到,获得积分10
1秒前
本杰明发布了新的文献求助10
2秒前
润润轩轩发布了新的文献求助10
2秒前
2秒前
共享精神应助烧烤采纳,获得10
3秒前
酒酿是也完成签到 ,获得积分10
3秒前
H71000A完成签到 ,获得积分10
3秒前
文章多多完成签到 ,获得积分10
3秒前
3秒前
bwbw发布了新的文献求助10
4秒前
华仔应助Lvj采纳,获得10
4秒前
我是老大应助灵巧的坤采纳,获得10
4秒前
5秒前
wwwwyyyy完成签到,获得积分10
5秒前
hbb完成签到,获得积分10
5秒前
故意的傲玉应助韭菜采纳,获得10
5秒前
慕青应助脆弱的仙人掌采纳,获得10
5秒前
SY发布了新的文献求助10
5秒前
Libeau完成签到,获得积分10
5秒前
科研通AI5应助嘉禾望岗采纳,获得10
5秒前
凝安完成签到 ,获得积分10
6秒前
英姑应助Harlotte采纳,获得10
6秒前
双勾玉发布了新的文献求助10
7秒前
Owen应助gaos采纳,获得10
7秒前
7秒前
7秒前
QXS发布了新的文献求助10
8秒前
8秒前
充电宝应助乖猴猴采纳,获得10
8秒前
迟大猫应助VDC采纳,获得10
9秒前
Jenny应助故意的寒安采纳,获得10
9秒前
本杰明完成签到,获得积分10
9秒前
大树发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759