A Comprehensive Survey of Grammatical Error Correction

计算机科学 机器翻译 Boosting(机器学习) 人工智能 人气 机器学习 自然语言处理 实证研究 心理学 社会心理学 认识论 哲学
作者
Yu Wang,Yuelin Wang,Kai Dang,Jie Liu,Zhuo Liu
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:12 (5): 1-51 被引量:31
标识
DOI:10.1145/3474840
摘要

Grammatical error correction (GEC) is an important application aspect of natural language processing techniques, and GEC system is a kind of very important intelligent system that has long been explored both in academic and industrial communities. The past decade has witnessed significant progress achieved in GEC for the sake of increasing popularity of machine learning and deep learning. However, there is not a survey that untangles the large amount of research works and progress in this field. We present the first survey in GEC for a comprehensive retrospective of the literature in this area. We first give the definition of GEC task and introduce the public datasets and data annotation schema. After that, we discuss six kinds of basic approaches, six commonly applied performance boosting techniques for GEC systems, and three data augmentation methods. Since GEC is typically viewed as a sister task of Machine Translation (MT), we put more emphasis on the statistical machine translation (SMT)-based approaches and neural machine translation (NMT)-based approaches for the sake of their importance. Similarly, some performance-boosting techniques are adapted from MT and are successfully combined with GEC systems for enhancement on the final performance. More importantly, after the introduction of the evaluation in GEC, we make an in-depth analysis based on empirical results in aspects of GEC approaches and GEC systems for a clearer pattern of progress in GEC, where error type analysis and system recapitulation are clearly presented. Finally, we discuss five prospective directions for future GEC researches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LLLLL发布了新的文献求助10
1秒前
研友_ndvWy8发布了新的文献求助10
1秒前
好困应助百里瓶窑采纳,获得10
1秒前
专注的翠霜完成签到,获得积分10
2秒前
繁星与北斗完成签到,获得积分10
2秒前
Z-先森完成签到,获得积分10
3秒前
佳佳完成签到,获得积分10
3秒前
momo完成签到 ,获得积分10
3秒前
磕盐民工完成签到,获得积分10
3秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
HEIKU应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
flywo完成签到,获得积分20
5秒前
唐政清完成签到,获得积分10
5秒前
123456完成签到,获得积分10
5秒前
6秒前
爱吃粑粑完成签到,获得积分10
6秒前
yulian发布了新的文献求助10
6秒前
香蕉觅云应助图苏采纳,获得100
6秒前
文艺的又亦完成签到,获得积分10
7秒前
细心香烟完成签到 ,获得积分10
8秒前
kp完成签到,获得积分10
8秒前
无糖零脂完成签到,获得积分10
9秒前
英姑应助LLLLL采纳,获得10
9秒前
买菜市民熊先生完成签到,获得积分10
9秒前
CipherSage应助2420574910采纳,获得10
10秒前
软绵绵完成签到,获得积分10
11秒前
1821977451完成签到,获得积分10
12秒前
13秒前
玉铉完成签到,获得积分10
14秒前
z369发布了新的文献求助10
14秒前
LLLLL完成签到,获得积分20
15秒前
会撒娇的书白完成签到 ,获得积分10
15秒前
ClaudiaY0完成签到,获得积分10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261909
求助须知:如何正确求助?哪些是违规求助? 2902640
关于积分的说明 8321238
捐赠科研通 2572561
什么是DOI,文献DOI怎么找? 1397755
科研通“疑难数据库(出版商)”最低求助积分说明 653851
邀请新用户注册赠送积分活动 632341