计算机科学
机器翻译
Boosting(机器学习)
人工智能
人气
机器学习
自然语言处理
实证研究
心理学
社会心理学
认识论
哲学
作者
Yu Wang,Yuelin Wang,Kai Dang,Jie Liu,Zhuo Liu
出处
期刊:ACM Transactions on Intelligent Systems and Technology
[Association for Computing Machinery]
日期:2021-10-31
卷期号:12 (5): 1-51
被引量:31
摘要
Grammatical error correction (GEC) is an important application aspect of natural language processing techniques, and GEC system is a kind of very important intelligent system that has long been explored both in academic and industrial communities. The past decade has witnessed significant progress achieved in GEC for the sake of increasing popularity of machine learning and deep learning. However, there is not a survey that untangles the large amount of research works and progress in this field. We present the first survey in GEC for a comprehensive retrospective of the literature in this area. We first give the definition of GEC task and introduce the public datasets and data annotation schema. After that, we discuss six kinds of basic approaches, six commonly applied performance boosting techniques for GEC systems, and three data augmentation methods. Since GEC is typically viewed as a sister task of Machine Translation (MT), we put more emphasis on the statistical machine translation (SMT)-based approaches and neural machine translation (NMT)-based approaches for the sake of their importance. Similarly, some performance-boosting techniques are adapted from MT and are successfully combined with GEC systems for enhancement on the final performance. More importantly, after the introduction of the evaluation in GEC, we make an in-depth analysis based on empirical results in aspects of GEC approaches and GEC systems for a clearer pattern of progress in GEC, where error type analysis and system recapitulation are clearly presented. Finally, we discuss five prospective directions for future GEC researches.
科研通智能强力驱动
Strongly Powered by AbleSci AI