ACP-CLB: An Anticancer Peptide Prediction Model Based on Multichannel Discriminative Processing and Integration of Large Pretrained Protein Language Models

判别式 计算机科学 人工智能 计算生物学 自然语言处理 化学 生物 生物化学
作者
Aoyun Geng,Zhenjie Luo,Aohan Li,Zilong Zhang,Quan Zou,Leyi Wei,Feifei Cui
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c02072
摘要

Cancer affects millions globally, and as research advances, our understanding and treatment of cancer evolve. Compared to conventional treatments with significant side effects, anticancer peptides (ACPs) have gained considerable attention. Validating ACPs through wet-lab experiments is time-consuming and costly. However, numerous artificial intelligence methods are now used for ACP identification and classification. These methods typically apply a uniform strategy to all feature types, overlooking the potential benefits of more specialized processing for different feature types. In this paper, we propose a framework based on multichannel discriminative processing, where different neural networks are applied to process various feature types, optimizing their respective feature vectors. Additionally, we leverage Large Pretrained Protein Language Models to capture deeper sequence features, further enhancing the model's performance. Contributions: To better validate the overall performance and generalization ability of the model, we compared it with state-of-the-art models using four different data sets (AntiCp2Main, AntiCp2 Alternate, ACP740, cACP-DeepGram). The results show significant improvements across most metrics. Additionally, our proposed framework better assists researchers in distinguishing and identifying ACPs and further validates the need for distinct processing methods for different feature types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
skyer1完成签到,获得积分10
1秒前
1秒前
科目三应助Myles采纳,获得10
1秒前
元水云发布了新的文献求助10
1秒前
王永文发布了新的文献求助10
2秒前
2秒前
NancyDee完成签到,获得积分10
2秒前
科目三应助rosexu采纳,获得10
3秒前
小双发布了新的文献求助10
3秒前
小孙完成签到,获得积分10
3秒前
doxiao发布了新的文献求助10
4秒前
SYLH应助诺木采纳,获得20
5秒前
6秒前
7秒前
kingqjack发布了新的文献求助10
8秒前
打打应助甜甜的鞋子采纳,获得10
8秒前
毛豆应助NancyDee采纳,获得10
9秒前
碗碗完成签到,获得积分10
11秒前
12秒前
14秒前
15秒前
华仔应助一二采纳,获得10
16秒前
16秒前
16秒前
16秒前
疯狂的翠柏完成签到 ,获得积分10
16秒前
诺木完成签到,获得积分10
16秒前
搜集达人应助糊涂的大门采纳,获得10
17秒前
上官若男应助dong采纳,获得10
19秒前
所所应助小吴采纳,获得10
20秒前
zhao发布了新的文献求助10
20秒前
kingqjack完成签到,获得积分10
21秒前
qiao发布了新的文献求助10
22秒前
上官若男应助YORLAN采纳,获得10
22秒前
yesyesok发布了新的文献求助10
24秒前
舒适的藏花完成签到 ,获得积分10
25秒前
夏哈哈完成签到 ,获得积分10
25秒前
小双完成签到,获得积分20
25秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469879
求助须知:如何正确求助?哪些是违规求助? 3063087
关于积分的说明 9081400
捐赠科研通 2753353
什么是DOI,文献DOI怎么找? 1510835
邀请新用户注册赠送积分活动 698104
科研通“疑难数据库(出版商)”最低求助积分说明 698028