巨噬细胞极化
mTORC1型
死孢子体1
自噬
基因敲除
下调和上调
癌症研究
化学
分子生物学
巨噬细胞
信号转导
生物
细胞生物学
体外
PI3K/AKT/mTOR通路
生物化学
细胞凋亡
基因
作者
Xiaoyuan Zhu,Yudong Sun,Qianle Yu,Xueping Wang,Ying Wang,Yulin Zhao
标识
DOI:10.1016/j.intimp.2023.110450
摘要
Macrophages are involved in the pathogenesis of allergic rhinitis (AR), but how these macrophages are polarized to M1 or M2 type is undetermined. Long non-coding RNA growth arrest specific transcript 5 (GAS5) is upregulated in exosomes isolated from nasal mucus of AR patients (AR-EXO) and aggravates nasal symptoms in AR mice. In the present study, we are aimed to elucidate the potential role of GAS5 in macrophage polarization during AR pathogenesis. An AR mice model was constructed. The potential function of GAS5 was evaluated by western blot, RNA immunoprecipitation (RIP), biotinylated RNA pull-down assay, co-immunoprecipitation (co-IP) assay, flow cytometry, enzyme-linked immunosorbent assay (ELISA) assay, and immunohistochemistry (IHC) staining. We found that GAS5 is upregulated in ovalbumin-treated human nasal epithelial cells RPMI 2650 (OVA-EXO) and nasal mucus of AR mice. OVA-EXO treatment or forced GAS5 expression promoted M1 macrophage polarization of peripheral blood monocytes (PB monocytes) and THP-1 macrophages in vitro. GAS5 overexpression aggravated the allergic nasal symptoms induced by OVA in AR mice and facilitated M1 macrophage polarization and allergic inflammation, while knockdown of GAS5 exhibited opposite effects in vivo. GAS5 activated NF-кB signaling via suppressing autophagy-dependent degradation of IKKα/β in macrophages. Furthermore, GAS5 acted as a scaffold to strengthen the interaction between mTORC1 and ULK1, thus impaired ULK1/ATG13-mediated autophagy via increasing mTORC1 activity. Finally, restored autophagy by ATG13 overexpression suppressed the effect of GAS5 on M1 macrophage polarization. In conclusion, these results suggested that exosomal transfer of GAS5 promoted M1 macrophage polarization via restraining mTORC1/ULK1/ATG13-mediated autophagy and subsequently activating NF-кB signaling in allergic rhinitis.
科研通智能强力驱动
Strongly Powered by AbleSci AI