Enhanced grindability and mechanism in the magnetic traction nanolubricant grinding of Ti-6Al-4 V

研磨 材料科学 润滑 复合材料 冶金
作者
Xin Cui,Changhe Li,Min Yang,Mingzheng Liu,Teng Gao,Xiaoming Wang,Zafar Said,Shubham Sharma,Bin Zhang
出处
期刊:Tribology International [Elsevier BV]
卷期号:186: 108603-108603 被引量:61
标识
DOI:10.1016/j.triboint.2023.108603
摘要

Minimum quantity lubrication with nanolubricants is an efficient and environmentally friendly lubrication method with the greatest potential to replace traditional metal grinding with fluids. However, it faces the technical challenge of insufficient infiltration capacity in complex grinding zones, leading to the deterioration of tribological properties and surface integrity, especially in the large contact length grinding (LCLG) of difficult-to-machine aerospace materials. In this paper, we present a novel magnetic traction nano-lubrication (MTN) method, wherein a magnetic-assisted device is used to generate traction energy for increasing the infiltration capacity of magnetic nanolubricants in grinding. However, the effectiveness and mechanism of MTN grinding have not been studied. First, our results showed that in general grinding, the Fe3O4/graphene nanolubricant showed better cooling and lubrication performance than palm oil, Fe3O4 nanolubricants, and graphene nanolubricants. In MTN grinding, grinding force and grinding temperature had reduced by 35.8% and 66.4%, respectively, with the arithmetical mean height Sa decreasing by 27.5%. Plastic uplift and debris adhesion on the workpiece surface were also eliminated. Second, the improvement in infiltration performance under magnetic field traction was further verified by the LCLG experiment. Finally, the unique infiltration and antifriction mechanism of MTN were analyzed. The MTN technology solves the technical bottleneck of poor surface integrity and provides a solution for the LCLG of materials with high hardness and toughness and low thermal conductivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃不完发布了新的文献求助10
刚刚
彭于晏应助linxcc采纳,获得10
2秒前
super chan发布了新的文献求助10
3秒前
田様应助沙克几十块采纳,获得10
4秒前
4秒前
gzj完成签到,获得积分10
6秒前
gu发布了新的文献求助10
8秒前
CipherSage应助As故采纳,获得50
11秒前
林夕发布了新的文献求助10
11秒前
完美世界应助沙克几十块采纳,获得10
11秒前
文盲完成签到,获得积分10
11秒前
凉风送信完成签到,获得积分10
13秒前
顽固分子完成签到 ,获得积分10
15秒前
李健应助沙克几十块采纳,获得10
20秒前
奇异物质完成签到,获得积分10
20秒前
吃不完完成签到,获得积分20
21秒前
21秒前
Rita发布了新的文献求助10
23秒前
yjjh完成签到 ,获得积分0
27秒前
29秒前
轻松的绮菱完成签到,获得积分10
29秒前
简奥斯汀发布了新的文献求助100
32秒前
32秒前
不不鱼完成签到,获得积分10
34秒前
35秒前
36秒前
38秒前
40秒前
苗条的嘉熙完成签到 ,获得积分10
41秒前
今后应助沙克几十块采纳,获得10
41秒前
41秒前
fuxiaopeng发布了新的文献求助10
42秒前
42秒前
LiZongze完成签到 ,获得积分10
43秒前
高兴123发布了新的文献求助10
43秒前
zp完成签到,获得积分20
44秒前
小医森发布了新的文献求助10
44秒前
rewind完成签到,获得积分10
44秒前
SciGPT应助dr_chou采纳,获得10
45秒前
甜美三娘完成签到,获得积分10
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673567
求助须知:如何正确求助?哪些是违规求助? 3229137
关于积分的说明 9784287
捐赠科研通 2939726
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760877
科研通“疑难数据库(出版商)”最低求助积分说明 736296