Accelerating therapeutic protein design with computational approaches toward the clinical stage

计算机科学 转化式学习 心理学 教育学
作者
Zhidong Chen,Xinpei Wang,Xu Chen,Juyang Huang,Chenglin Wang,Junqing Wang,Zhe Wang
出处
期刊:Computational and structural biotechnology journal [Elsevier]
卷期号:21: 2909-2926 被引量:11
标识
DOI:10.1016/j.csbj.2023.04.027
摘要

Abstract

Therapeutic protein, represented by antibodies, is of increasing interest in human medicine. However, clinical translation of therapeutic protein is still largely hindered by different aspects of developability, including affinity and selectivity, stability and aggregation prevention, solubility and viscosity reduction, and deimmunization. Conventional optimization of the developability with widely used methods, like display technologies and library screening approaches, is a time and cost-intensive endeavor, and the efficiency in finding suitable solutions is still not enough to meet clinical needs. In recent years, the accelerated advancement of computational methodologies has ushered in a transformative era in the field of therapeutic protein design. Owing to their remarkable capabilities in feature extraction and modeling, the integration of cutting-edge computational strategies with conventional techniques presents a promising avenue to accelerate the progression of therapeutic protein design and optimization toward clinical implementation. Here, we compared the differences between therapeutic protein and small molecules in developability and provided an overview of the computational approaches applicable to the design or optimization of therapeutic protein in several developability issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
不周山修猫完成签到,获得积分10
1秒前
2秒前
3秒前
小熊饼干完成签到,获得积分10
3秒前
3秒前
张钊于发布了新的文献求助10
3秒前
Lavender完成签到,获得积分10
4秒前
王嘉尔完成签到,获得积分10
4秒前
4秒前
REBECCA完成签到 ,获得积分10
6秒前
Owen应助Guko采纳,获得10
6秒前
莉丽发布了新的文献求助10
7秒前
7秒前
7秒前
打打应助玄易采纳,获得10
8秒前
8秒前
9秒前
充电宝应助Lavender采纳,获得10
9秒前
星空发布了新的文献求助10
9秒前
Owen应助fddd采纳,获得10
9秒前
9秒前
ZAJ发布了新的文献求助10
10秒前
所所应助King采纳,获得10
10秒前
11秒前
浮游应助刘老哥6采纳,获得10
12秒前
12秒前
TS完成签到,获得积分10
12秒前
max发布了新的文献求助10
13秒前
隐形曼青应助晓竹采纳,获得10
13秒前
Arrebol完成签到,获得积分10
14秒前
充电宝应助boging采纳,获得10
14秒前
英俊的铭应助JiaY采纳,获得10
14秒前
15秒前
霸气的半烟完成签到,获得积分20
16秒前
稳重的皮皮虾关注了科研通微信公众号
16秒前
ZAJ完成签到,获得积分10
16秒前
自己的样子好好看完成签到,获得积分10
17秒前
思源应助zj采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465317
求助须知:如何正确求助?哪些是违规求助? 4569688
关于积分的说明 14320442
捐赠科研通 4496086
什么是DOI,文献DOI怎么找? 2463069
邀请新用户注册赠送积分活动 1452085
关于科研通互助平台的介绍 1427268