HeTriNet: Heterogeneous Graph Triplet Attention Network for Drug-Target-Disease Interaction

成对比较 计算机科学 图形 机制(生物学) 疾病 相互依存 药品 计算生物学 药物靶点 交互网络 药物发现 异构网络 理论计算机科学 人工智能 生物信息学 生物 医学 药理学 物理 遗传学 政治学 电信 无线 法学 量子力学 病理 无线网络 基因
作者
Farhan Tanvir,Khaled Mohammed Saifuddin,Tanvir Hossain,Arunkumar Bagavathi,Esra Akbaş
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2312.00189
摘要

Modeling the interactions between drugs, targets, and diseases is paramount in drug discovery and has significant implications for precision medicine and personalized treatments. Current approaches frequently consider drug-target or drug-disease interactions individually, ignoring the interdependencies among all three entities. Within human metabolic systems, drugs interact with protein targets in cells, influencing target activities and subsequently impacting biological pathways to promote healthy functions and treat diseases. Moving beyond binary relationships and exploring tighter triple relationships is essential to understanding drugs' mechanism of action (MoAs). Moreover, identifying the heterogeneity of drugs, targets, and diseases, along with their distinct characteristics, is critical to model these complex interactions appropriately. To address these challenges, we effectively model the interconnectedness of all entities in a heterogeneous graph and develop a novel Heterogeneous Graph Triplet Attention Network (\texttt{HeTriNet}). \texttt{HeTriNet} introduces a novel triplet attention mechanism within this heterogeneous graph structure. Beyond pairwise attention as the importance of an entity for the other one, we define triplet attention to model the importance of pairs for entities in the drug-target-disease triplet prediction problem. Experimental results on real-world datasets show that \texttt{HeTriNet} outperforms several baselines, demonstrating its remarkable proficiency in uncovering novel drug-target-disease relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
lizzzzzz发布了新的文献求助10
5秒前
6秒前
clean发布了新的文献求助10
6秒前
无花果应助椰脑采纳,获得10
6秒前
行者完成签到,获得积分10
7秒前
7秒前
ffx发布了新的文献求助10
8秒前
9秒前
大方绿蕊发布了新的文献求助10
9秒前
9秒前
Lucas应助xxx采纳,获得10
10秒前
一点也不可爱完成签到,获得积分10
10秒前
11秒前
程瑞哲完成签到,获得积分10
12秒前
12秒前
慕青应助Missyang采纳,获得10
14秒前
FashionBoy应助JiaweiZhang采纳,获得80
14秒前
osew完成签到,获得积分20
14秒前
14秒前
Rita应助aabbccwy采纳,获得10
14秒前
zjh完成签到,获得积分10
14秒前
16秒前
无花果应助优秀毕业生采纳,获得10
16秒前
16秒前
自然1111发布了新的文献求助10
17秒前
hyy完成签到,获得积分20
18秒前
19秒前
每天都想发文章完成签到,获得积分10
19秒前
21秒前
我是老大应助zdy采纳,获得10
21秒前
JamesPei应助自信的眉毛采纳,获得10
22秒前
xxx发布了新的文献求助10
22秒前
wpeng完成签到,获得积分10
23秒前
最好我儿长柏高中完成签到,获得积分10
23秒前
23秒前
孤独冷霜发布了新的文献求助10
24秒前
Zn应助木樰采纳,获得10
24秒前
reflux应助osew采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542875
求助须知:如何正确求助?哪些是违规求助? 3120166
关于积分的说明 9341799
捐赠科研通 2818206
什么是DOI,文献DOI怎么找? 1549434
邀请新用户注册赠送积分活动 722146
科研通“疑难数据库(出版商)”最低求助积分说明 712978