锂(药物)
离子电导率
电化学
快离子导体
电导率
材料科学
法拉第效率
扫描电子显微镜
分析化学(期刊)
化学工程
无机化学
化学
电极
电解质
复合材料
物理化学
医学
工程类
内分泌学
色谱法
作者
Hak-Min Kim,Yuvaraj Subramanian,Kwang‐Sun Ryu
标识
DOI:10.1016/j.electacta.2023.141869
摘要
At present, sulfide-based solid electrolytes have attracted considerable attention, especially argyrodite-type solid electrolyte, Li6PS5X (X = Cl, Br, I), due to its appropriate mechanical strength and high ionic conductivity (>10–3 S/cm). However, it still falls short of liquid electrolytes in terms of ionic conductivity and has the fatal drawback of being unstable to moist air. In this report, we prepare SeS2 doped Li6PS5Cl through high-energy ball milling followed by heat treatment. We also confirm the structural properties using powder X-ray diffraction (XRD) and Raman analyses. Next, we perform surface morphology and elemental analysis using a field emission scanning electron microscope (FE-SEM) and energy-dispersive X-ray spectroscope (EDS). The synthesized Li6.03P0.97Se0.03S5Cl electrolyte shows a higher ionic conductivity of 5.4 mS/cm and a lower activation energy of 0.287 eV compared to pristine Li6PS5Cl (4.4 mS/cm, 0.292 eV) at 25 ℃, and it also shows good stability against Li metal. The optimized electrolyte shows a higher initial discharge capacity of 175 mAh/g and coulombic efficiency of 67.6%. Interestingly, Li6.03P0.97Se0.03S5Cl showed 61.5% of the 1 C rate capacity compared to that at the 0.05 C rate, which was significantly improved compared to the corresponding value of the pristine. Finally, to measure the air stability properties, the H2S generation amount test and EIS test were both performed before and after exposure to air and Li6.03P0.97Se0.03S5Cl shows a high ionic conductivity of 3.06 mS/cm after 30 min dry air exposure.
科研通智能强力驱动
Strongly Powered by AbleSci AI