Design and implementation of traffic police hand gesture recognition system based on surface electromyographic signals

计算机科学 手势 手势识别 卷积神经网络 接口(物质) 交警 人工智能 隐马尔可夫模型 实时计算 语音识别 政治学 最大气泡压力法 气泡 并行计算 法学
作者
Wenxuan Ma,Qingtian Zeng,Ge Song,Minghao Zou
标识
DOI:10.1109/imcec55388.2022.10020092
摘要

In the event of traffic congestion, unexpected traffic accidents, or severe weather, it is difficult to guarantee traffic safety and smoothness merely through traffic lights. Consequently, the traffic police are required to execute on-site command. However, it can be challenging for pedestrians to accurately notice and comprehend the hand gestures of traffic police in a complicated environment using only their eyes, which will result in incorrect judgments of the traffic situation. In order to minimize the influence of complex external environment on traffic police gesture recognition, we design and implement a traffic police hand gesture recognition system based on surface electromyography (sEMG) signals in this paper. In addition to establishing eight traffic police standard gesture datasets (TPSG) by the Arduino UNO development board and sEMG sensor, we also propose TSE-GRU, a novel neural network for accurate and robust traffic police gesture recognition. TSE-GRU incorporates the improved temporal convolutional network (TCN) and the gated recurrent unit (GRU). More specifically, the improved TCN employs the Squeeze-and-Excitation Networks (SE) that is modified to strengthen the representational power of temporal features from each TCN layers for extracting more advanced spatial features among multiple channel data, and the GRU captures long-term dependencies from time-series data. The experimental results show that TSE-GRU performs well and achieves 97.89% accuracy in the dataset TPSG under various experiment settings. The GUI interface of the recognition system can also show the current recognition results in real-time and timely provide feedback to the user on the traffic police gesture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
gjl完成签到,获得积分10
1秒前
1秒前
阔达碧空发布了新的文献求助10
1秒前
4秒前
samara发布了新的文献求助10
4秒前
ding应助小八统治世界采纳,获得10
4秒前
7秒前
7秒前
淡然靖柔发布了新的文献求助10
7秒前
Bear完成签到,获得积分10
8秒前
9秒前
10秒前
11秒前
chl发布了新的文献求助10
11秒前
走着完成签到,获得积分10
13秒前
毛毛酱发布了新的文献求助30
14秒前
15秒前
15秒前
16秒前
阴森女公爵关注了科研通微信公众号
16秒前
尼克的朱迪完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
ttg990720发布了新的文献求助10
18秒前
19秒前
19秒前
有魅力强炫完成签到,获得积分10
19秒前
周涛完成签到,获得积分10
19秒前
zhouti497541171完成签到,获得积分10
21秒前
光翟君发布了新的文献求助10
21秒前
斯文明杰发布了新的文献求助10
22秒前
23秒前
23秒前
爆米花应助泠泠泠萘采纳,获得10
23秒前
郭靖发布了新的文献求助10
23秒前
万能图书馆应助老jia采纳,获得10
23秒前
隐形曼青应助Li梨采纳,获得10
24秒前
李健应助贾晓丽采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033