Design and implementation of traffic police hand gesture recognition system based on surface electromyographic signals

计算机科学 手势 手势识别 卷积神经网络 接口(物质) 交警 人工智能 隐马尔可夫模型 实时计算 语音识别 气泡 最大气泡压力法 并行计算 政治学 法学
作者
Wenxuan Ma,Qingtian Zeng,Ge Song,Minghao Zou
标识
DOI:10.1109/imcec55388.2022.10020092
摘要

In the event of traffic congestion, unexpected traffic accidents, or severe weather, it is difficult to guarantee traffic safety and smoothness merely through traffic lights. Consequently, the traffic police are required to execute on-site command. However, it can be challenging for pedestrians to accurately notice and comprehend the hand gestures of traffic police in a complicated environment using only their eyes, which will result in incorrect judgments of the traffic situation. In order to minimize the influence of complex external environment on traffic police gesture recognition, we design and implement a traffic police hand gesture recognition system based on surface electromyography (sEMG) signals in this paper. In addition to establishing eight traffic police standard gesture datasets (TPSG) by the Arduino UNO development board and sEMG sensor, we also propose TSE-GRU, a novel neural network for accurate and robust traffic police gesture recognition. TSE-GRU incorporates the improved temporal convolutional network (TCN) and the gated recurrent unit (GRU). More specifically, the improved TCN employs the Squeeze-and-Excitation Networks (SE) that is modified to strengthen the representational power of temporal features from each TCN layers for extracting more advanced spatial features among multiple channel data, and the GRU captures long-term dependencies from time-series data. The experimental results show that TSE-GRU performs well and achieves 97.89% accuracy in the dataset TPSG under various experiment settings. The GUI interface of the recognition system can also show the current recognition results in real-time and timely provide feedback to the user on the traffic police gesture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy.he应助桌球有点蔡先生采纳,获得10
1秒前
NexusExplorer应助阿楊采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
7秒前
所所应助王博林采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
张静枝完成签到 ,获得积分10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得30
7秒前
ED应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
CHENG_2025应助安静的棉花糖采纳,获得10
7秒前
7秒前
7秒前
SYLH应助hlf采纳,获得10
8秒前
yuhui完成签到,获得积分10
9秒前
在吃饭的时候吃饭完成签到,获得积分10
10秒前
11秒前
kw完成签到 ,获得积分10
11秒前
穆易羊完成签到 ,获得积分10
13秒前
mmyhn应助79采纳,获得20
14秒前
14秒前
负责冰烟完成签到 ,获得积分10
15秒前
小火苗发布了新的文献求助10
15秒前
木之木完成签到,获得积分10
16秒前
论文顺利发布了新的文献求助30
17秒前
负责惊蛰完成签到 ,获得积分10
21秒前
21秒前
qian发布了新的文献求助30
21秒前
充电宝应助小火苗采纳,获得10
23秒前
gaohui发布了新的文献求助10
26秒前
化工人完成签到,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324