已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Design and implementation of traffic police hand gesture recognition system based on surface electromyographic signals

计算机科学 手势 手势识别 卷积神经网络 接口(物质) 交警 人工智能 隐马尔可夫模型 实时计算 语音识别 政治学 最大气泡压力法 气泡 并行计算 法学
作者
Wenxuan Ma,Qingtian Zeng,Ge Song,Minghao Zou
标识
DOI:10.1109/imcec55388.2022.10020092
摘要

In the event of traffic congestion, unexpected traffic accidents, or severe weather, it is difficult to guarantee traffic safety and smoothness merely through traffic lights. Consequently, the traffic police are required to execute on-site command. However, it can be challenging for pedestrians to accurately notice and comprehend the hand gestures of traffic police in a complicated environment using only their eyes, which will result in incorrect judgments of the traffic situation. In order to minimize the influence of complex external environment on traffic police gesture recognition, we design and implement a traffic police hand gesture recognition system based on surface electromyography (sEMG) signals in this paper. In addition to establishing eight traffic police standard gesture datasets (TPSG) by the Arduino UNO development board and sEMG sensor, we also propose TSE-GRU, a novel neural network for accurate and robust traffic police gesture recognition. TSE-GRU incorporates the improved temporal convolutional network (TCN) and the gated recurrent unit (GRU). More specifically, the improved TCN employs the Squeeze-and-Excitation Networks (SE) that is modified to strengthen the representational power of temporal features from each TCN layers for extracting more advanced spatial features among multiple channel data, and the GRU captures long-term dependencies from time-series data. The experimental results show that TSE-GRU performs well and achieves 97.89% accuracy in the dataset TPSG under various experiment settings. The GUI interface of the recognition system can also show the current recognition results in real-time and timely provide feedback to the user on the traffic police gesture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漠漠完成签到 ,获得积分10
2秒前
洛神完成签到 ,获得积分10
2秒前
微笑的白柏完成签到,获得积分10
3秒前
4秒前
布梨完成签到 ,获得积分10
4秒前
持卿发布了新的文献求助10
4秒前
pluto完成签到,获得积分0
4秒前
淼鑫发布了新的文献求助10
6秒前
十三完成签到 ,获得积分10
7秒前
过时的小蘑菇完成签到 ,获得积分10
8秒前
乐乐应助认真学习的橘子采纳,获得10
8秒前
ff发布了新的文献求助10
9秒前
10秒前
是是是WQ完成签到 ,获得积分10
10秒前
999完成签到,获得积分10
11秒前
无奈玫瑰完成签到,获得积分20
13秒前
14秒前
yuntong完成签到 ,获得积分10
15秒前
liu完成签到 ,获得积分10
15秒前
天天快乐应助ff采纳,获得10
16秒前
冷静的莞完成签到 ,获得积分10
17秒前
18秒前
Simpson完成签到 ,获得积分10
18秒前
香蕉觅云应助淼鑫采纳,获得10
19秒前
20秒前
种喜欢的花完成签到 ,获得积分10
22秒前
ff完成签到,获得积分20
23秒前
犹豫傲南完成签到 ,获得积分10
24秒前
葛二蛋完成签到,获得积分10
25秒前
乐乐应助哈哈哈采纳,获得10
25秒前
五十一完成签到 ,获得积分10
26秒前
淼鑫完成签到,获得积分10
26秒前
慕青应助科研通管家采纳,获得10
27秒前
杳鸢应助科研通管家采纳,获得10
28秒前
杳鸢应助科研通管家采纳,获得10
28秒前
平常松思完成签到,获得积分10
28秒前
顾矜应助雨季采纳,获得10
29秒前
30秒前
心里的种子完成签到 ,获得积分10
33秒前
平常松思发布了新的文献求助10
33秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234454
求助须知:如何正确求助?哪些是违规求助? 2880798
关于积分的说明 8217056
捐赠科研通 2548395
什么是DOI,文献DOI怎么找? 1377724
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623314