ABSTRACT This paper introduces a novel approach to optimize genetic algorithms (GAs) for homestay recommendation systems, specifically designed for smart village tourism destinations. Researchers developed an advanced GA focused on maximizing user satisfaction, the main quality metric. The algorithm was tailored to address the dynamic nature of homestay offerings and the varied preferences of travelers, using users' reviews, listing attributes, and historical booking data. The GA framework included a custom encoding scheme, fitness function, and parameters. Validation occurred through a case study in a smart village, with the algorithm's effectiveness tested via user surveys and ratings. Results showed that GA‐driven recommendations surpassed traditional methods, enhancing user satisfaction, trust, and booking rates while benefiting hosts with positive reviews. The optimized GA improved recommendation accuracy and efficiency, boosting economic benefits for local communities and contributing significantly to recommendation system research.