材料科学
热导率
界面热阻
碳化硅
复合材料
氮化硼
聚二甲基硅氧烷
热阻
陶瓷
传热
烧结
热力学
物理
作者
Yimin Yao,Zhenqiang Ye,Feiyang Huang,Xiaoliang Zeng,Tao Zhang,Tianyu Shang,Meng Han,Weilin Zhang,Linlin Ren,Rong Sun,Jianbin Xu,Ching‐Ping Wong
标识
DOI:10.1021/acsami.9b19280
摘要
Conventional polymer composites normally suffer from undesired thermal conductivity enhancement which has hampered the development of modern electronics as they face a stricter heat dissipating requirement. It is still challenging to achieve satisfactory thermal conductivity enhancement with reasonable mechanical properties. Herein, we present a three-dimensional (3D), lightweight, and mechanically strong boron nitride (BN)-silicon carbide (SiC) skeleton with aligned thermal pathways via the combination of ice-templated assembly and high-temperature sintering. The sintering has introduced atomic-level coupling at the BN-SiC junction which contributes to efficient phonon transport via the newly formed borosilicate glass BCxN3-x (0 ≤ x ≤ 3) and SiCxN4-x (0 ≤ x ≤ 4) phases, leading to much lower interfacial thermal resistance. Thus, the obtained BN-SiC skeleton shows satisfactory thermal performance. The prepared 3D BN-SiC/polydimethylsiloxane (PDMS) composites exhibit a maximum through-plane thermal conductivity of 3.87 W·m-1·K-1 at a filler loading of only 8.35 vol %. The thermal conductivity enhancement efficiency reaches 220% per 1 vol % filler when compared to pure PDMS matrix, superior to other reported BN skeleton-based composites. The feature of our strategy is to allow the oriented three-dimensional skeleton to be strongly bonded by a sintered ceramic phase instead of polymer-like adhesive, namely, to improve the intrinsic thermal conductivity of the skeleton to the greatest extent. This strategy can be applied to develop novel thermal management materials that are lightweight and mechanically tough that rapidly transfer heat. It represents a new avenue to addressing the heat challenges in traditional electronic products.
科研通智能强力驱动
Strongly Powered by AbleSci AI