Fine-Grained Traffic Flow Prediction of Various Vehicle Types via Fusion of Multisource Data and Deep Learning Approaches

计算机科学 流量(计算机网络) 浮动车数据 智能交通系统 传感器融合 深度学习 伤亡人数 数据收集 实时计算 交通拥挤 数据挖掘 运输工程 人工智能 工程类 计算机安全 统计 数学 生物 遗传学
作者
Ping Wang,Wenbang Hao,Yinli Jin
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 6921-6930 被引量:40
标识
DOI:10.1109/tits.2020.2997412
摘要

Both road users and road administrators are keen to know traffic flow of fine-grained vehicle type. Successful prediction on the traffic flow of heavy, medium and small vehicle could contribute to the improvement of travel safety and efficiency. However, the classification on vehicle type is always not accurate enough using in practice. It could cost a lot to identify from the additional video cameras to cover the full-length of large-scale freeway with high-resolution to capture vehicles clearly. In this paper, empirical data are cleaned, normalized, compensated, filled, decoded and filtered with help of the fusion of vehicle detector data, remote microwave sensors data and toll collection data. The traffic flows of fine-grained heavy, medium and small vehicles are successfully reconstructed. Improved deep belief network (DBN) are then proposed to forecast traffic flow of different types of vehicles in 30-, 60- and 120-minutes time interval. Random-selected road segments on a ring way around a city are trained with data accumulated three months and predict data in the next month. According to prediction error analysis, the proposed method performs better in estimation and forecasting, with respect to the existing methods, especially for longer time prediction and heavy vehicle prediction. It would benefit traffic control to prevent freeway congestion escalation, protect the traffic infrastructure via heavy vehicle control, reduce the road risk, prompt quick emergency response and eventually contributes to more applications for intelligent transportation system (ITS).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
灵均完成签到 ,获得积分10
刚刚
1秒前
动人的珩完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
Peng完成签到,获得积分20
1秒前
2秒前
雪ノ下詩乃完成签到,获得积分10
2秒前
浮游应助自然的早晨采纳,获得10
2秒前
小青椒应助曾辉采纳,获得10
3秒前
3秒前
蹦蹦灯儿发布了新的文献求助10
3秒前
默默筮发布了新的文献求助10
3秒前
爱喝酸奶发布了新的文献求助10
3秒前
神奇宝贝完成签到,获得积分10
3秒前
4秒前
bensenback完成签到,获得积分10
4秒前
ok完成签到,获得积分10
4秒前
5秒前
Criminology34举报努力搬砖求助涉嫌违规
5秒前
7890733发布了新的文献求助10
5秒前
Natsu完成签到,获得积分10
5秒前
Accelerator完成签到,获得积分10
5秒前
zheng发布了新的文献求助30
6秒前
6秒前
噗咔咔ya完成签到 ,获得积分10
6秒前
7秒前
cc发布了新的文献求助10
7秒前
pcr163应助传统的宝莹采纳,获得200
7秒前
7秒前
7秒前
Nyxia发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
YXYWZMSZ发布了新的文献求助10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068676
求助须知:如何正确求助?哪些是违规求助? 4290262
关于积分的说明 13366925
捐赠科研通 4110092
什么是DOI,文献DOI怎么找? 2250689
邀请新用户注册赠送积分活动 1255935
关于科研通互助平台的介绍 1188480