Fine-Grained Traffic Flow Prediction of Various Vehicle Types via Fusion of Multisource Data and Deep Learning Approaches

计算机科学 流量(计算机网络) 浮动车数据 智能交通系统 传感器融合 深度学习 伤亡人数 数据收集 实时计算 交通拥挤 数据挖掘 运输工程 人工智能 工程类 计算机安全 统计 数学 生物 遗传学
作者
Ping Wang,Wenbang Hao,Yinli Jin
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 6921-6930 被引量:40
标识
DOI:10.1109/tits.2020.2997412
摘要

Both road users and road administrators are keen to know traffic flow of fine-grained vehicle type. Successful prediction on the traffic flow of heavy, medium and small vehicle could contribute to the improvement of travel safety and efficiency. However, the classification on vehicle type is always not accurate enough using in practice. It could cost a lot to identify from the additional video cameras to cover the full-length of large-scale freeway with high-resolution to capture vehicles clearly. In this paper, empirical data are cleaned, normalized, compensated, filled, decoded and filtered with help of the fusion of vehicle detector data, remote microwave sensors data and toll collection data. The traffic flows of fine-grained heavy, medium and small vehicles are successfully reconstructed. Improved deep belief network (DBN) are then proposed to forecast traffic flow of different types of vehicles in 30-, 60- and 120-minutes time interval. Random-selected road segments on a ring way around a city are trained with data accumulated three months and predict data in the next month. According to prediction error analysis, the proposed method performs better in estimation and forecasting, with respect to the existing methods, especially for longer time prediction and heavy vehicle prediction. It would benefit traffic control to prevent freeway congestion escalation, protect the traffic infrastructure via heavy vehicle control, reduce the road risk, prompt quick emergency response and eventually contributes to more applications for intelligent transportation system (ITS).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
echo发布了新的文献求助10
3秒前
7秒前
9秒前
深情安青应助小zhu采纳,获得10
11秒前
一个小胖子完成签到,获得积分10
11秒前
shi hui应助yfy_fairy采纳,获得10
12秒前
虎牙心发布了新的文献求助10
12秒前
LDDLleor完成签到,获得积分10
14秒前
YY发布了新的文献求助10
16秒前
泡沫之夏完成签到,获得积分10
16秒前
xh完成签到 ,获得积分20
18秒前
妮妮完成签到 ,获得积分10
18秒前
浮游应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
Mic应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
宅多点应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
Ava应助Chi_bio采纳,获得10
20秒前
20秒前
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
宅多点应助科研通管家采纳,获得10
20秒前
宅多点应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
酷波er应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
yyzhou应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560221
求助须知:如何正确求助?哪些是违规求助? 4645390
关于积分的说明 14675061
捐赠科研通 4586534
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900