Fine-Grained Traffic Flow Prediction of Various Vehicle Types via Fusion of Multisource Data and Deep Learning Approaches

计算机科学 流量(计算机网络) 浮动车数据 智能交通系统 传感器融合 深度学习 伤亡人数 数据收集 实时计算 交通拥挤 数据挖掘 运输工程 人工智能 工程类 计算机安全 生物 统计 遗传学 数学
作者
Ping Wang,Wenbang Hao,Yinli Jin
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:22 (11): 6921-6930 被引量:40
标识
DOI:10.1109/tits.2020.2997412
摘要

Both road users and road administrators are keen to know traffic flow of fine-grained vehicle type. Successful prediction on the traffic flow of heavy, medium and small vehicle could contribute to the improvement of travel safety and efficiency. However, the classification on vehicle type is always not accurate enough using in practice. It could cost a lot to identify from the additional video cameras to cover the full-length of large-scale freeway with high-resolution to capture vehicles clearly. In this paper, empirical data are cleaned, normalized, compensated, filled, decoded and filtered with help of the fusion of vehicle detector data, remote microwave sensors data and toll collection data. The traffic flows of fine-grained heavy, medium and small vehicles are successfully reconstructed. Improved deep belief network (DBN) are then proposed to forecast traffic flow of different types of vehicles in 30-, 60- and 120-minutes time interval. Random-selected road segments on a ring way around a city are trained with data accumulated three months and predict data in the next month. According to prediction error analysis, the proposed method performs better in estimation and forecasting, with respect to the existing methods, especially for longer time prediction and heavy vehicle prediction. It would benefit traffic control to prevent freeway congestion escalation, protect the traffic infrastructure via heavy vehicle control, reduce the road risk, prompt quick emergency response and eventually contributes to more applications for intelligent transportation system (ITS).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大个应助董H采纳,获得10
1秒前
1秒前
yi发布了新的文献求助30
2秒前
kk发布了新的文献求助10
4秒前
4秒前
政治完成签到 ,获得积分10
5秒前
qingqing完成签到,获得积分20
6秒前
yukinade发布了新的文献求助10
6秒前
ee完成签到,获得积分10
7秒前
Zyhaou发布了新的文献求助10
7秒前
烟花应助hhhr采纳,获得10
7秒前
8秒前
jojokin发布了新的文献求助10
8秒前
8秒前
慕青应助魏佳旭采纳,获得10
10秒前
77发布了新的文献求助50
12秒前
董H发布了新的文献求助10
13秒前
jojokin完成签到,获得积分10
13秒前
潘潘潘完成签到,获得积分10
14秒前
LKT发布了新的文献求助10
15秒前
16秒前
传奇3应助包容的口红采纳,获得10
17秒前
在水一方应助细心机器猫采纳,获得10
17秒前
18秒前
yi完成签到,获得积分20
18秒前
上官若男应助goldfish采纳,获得10
18秒前
慕青应助元友容采纳,获得10
19秒前
cach完成签到,获得积分10
20秒前
咖飞发布了新的文献求助10
21秒前
英姑应助张123采纳,获得10
21秒前
21秒前
852发布了新的文献求助10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
prosperp应助科研通管家采纳,获得10
22秒前
丘比特应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289922
求助须知:如何正确求助?哪些是违规求助? 2926739
关于积分的说明 8428884
捐赠科研通 2598072
什么是DOI,文献DOI怎么找? 1417632
科研通“疑难数据库(出版商)”最低求助积分说明 659800
邀请新用户注册赠送积分活动 642224