Sentiment annotations for reviews: an information quality perspective

计算机科学 情绪分析 注释 质量(理念) 独创性 判决 旅游 透视图(图形) 互联网 情报检索 产品(数学) 数据科学 万维网 自然语言处理 人工智能 定性研究 社会科学 认识论 哲学 社会学 法学 数学 政治学 几何学
作者
Heng‐Li Yang,August F.Y. Chao
出处
期刊:Online Information Review [Emerald Publishing Limited]
卷期号:42 (5): 579-594 被引量:6
标识
DOI:10.1108/oir-04-2017-0114
摘要

Purpose The purpose of this paper is to propose sentiment annotation at sentence level to reduce information overloading while reading product/service reviews in the internet. Design/methodology/approach The keyword-based sentiment analysis is applied for highlighting review sentences. An experiment is conducted for demonstrating its effectiveness. Findings A prototype is built for highlighting tourism review sentences in Chinese with positive or negative sentiment polarity. An experiment results indicates that sentiment annotation can increase information quality and user’s intention to read tourism reviews. Research limitations/implications This study has made two major contributions: proposing the approach of adding sentiment annotation at sentence level of review texts for assisting decision-making; validating the relationships among the information quality constructs. However, in this study, sentiment analysis was conducted on a limited corpus; future research may try a larger corpus. Besides, the annotation system was built on the tourism data. Future studies might try to apply to other areas. Practical implications If the proposed annotation systems become popular, both tourists and attraction providers would obtain benefits. In this era of smart tourism, tourists could browse through the huge amount of internet information more quickly. Attraction providers could understand what are the strengths and weaknesses of their facilities more easily. The application of this sentiment analysis is possible for other languages, especially for non-spaced languages. Originality/value Facing large amounts of data, past researchers were engaged in automatically constructing a compact yet meaningful abstraction of the texts. However, users have different positions and purposes. This study proposes an alternative approach to add sentiment annotation at sentence level for assisting users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Duck发布了新的文献求助10
3秒前
4秒前
刻苦秋烟发布了新的文献求助10
5秒前
23发布了新的文献求助10
6秒前
8秒前
科目三应助没有昵称采纳,获得10
9秒前
11秒前
邹长飞发布了新的文献求助10
11秒前
qjd发布了新的文献求助10
12秒前
16秒前
呆萌的雁桃完成签到,获得积分10
17秒前
17秒前
无花果应助qjd采纳,获得10
17秒前
佳丽完成签到,获得积分10
18秒前
liucheng发布了新的文献求助10
21秒前
23完成签到,获得积分10
21秒前
柳绿柳发布了新的文献求助10
22秒前
齐济完成签到 ,获得积分10
23秒前
24秒前
24秒前
李健应助liucheng采纳,获得10
26秒前
崔尔蓉完成签到,获得积分10
27秒前
乔巴完成签到 ,获得积分10
28秒前
30秒前
江河发布了新的文献求助10
30秒前
搞怪靖发布了新的文献求助10
31秒前
31秒前
还行啊发布了新的文献求助10
34秒前
sss完成签到,获得积分10
35秒前
35秒前
烟花应助吕小布采纳,获得20
37秒前
斜对角的苍白完成签到,获得积分10
37秒前
cc完成签到 ,获得积分10
38秒前
39秒前
星辰大海应助搞怪靖采纳,获得10
40秒前
41秒前
dream177777完成签到,获得积分10
41秒前
41秒前
RAFA发布了新的文献求助10
43秒前
小栗完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4536169
求助须知:如何正确求助?哪些是违规求助? 3971612
关于积分的说明 12304500
捐赠科研通 3638418
什么是DOI,文献DOI怎么找? 2003137
邀请新用户注册赠送积分活动 1038702
科研通“疑难数据库(出版商)”最低求助积分说明 928104