Sentiment annotations for reviews: an information quality perspective

计算机科学 情绪分析 注释 质量(理念) 独创性 判决 旅游 透视图(图形) 互联网 情报检索 产品(数学) 数据科学 万维网 自然语言处理 人工智能 定性研究 社会科学 认识论 哲学 社会学 法学 数学 政治学 几何学
作者
Heng‐Li Yang,August F.Y. Chao
出处
期刊:Online Information Review [Emerald Publishing Limited]
卷期号:42 (5): 579-594 被引量:6
标识
DOI:10.1108/oir-04-2017-0114
摘要

Purpose The purpose of this paper is to propose sentiment annotation at sentence level to reduce information overloading while reading product/service reviews in the internet. Design/methodology/approach The keyword-based sentiment analysis is applied for highlighting review sentences. An experiment is conducted for demonstrating its effectiveness. Findings A prototype is built for highlighting tourism review sentences in Chinese with positive or negative sentiment polarity. An experiment results indicates that sentiment annotation can increase information quality and user’s intention to read tourism reviews. Research limitations/implications This study has made two major contributions: proposing the approach of adding sentiment annotation at sentence level of review texts for assisting decision-making; validating the relationships among the information quality constructs. However, in this study, sentiment analysis was conducted on a limited corpus; future research may try a larger corpus. Besides, the annotation system was built on the tourism data. Future studies might try to apply to other areas. Practical implications If the proposed annotation systems become popular, both tourists and attraction providers would obtain benefits. In this era of smart tourism, tourists could browse through the huge amount of internet information more quickly. Attraction providers could understand what are the strengths and weaknesses of their facilities more easily. The application of this sentiment analysis is possible for other languages, especially for non-spaced languages. Originality/value Facing large amounts of data, past researchers were engaged in automatically constructing a compact yet meaningful abstraction of the texts. However, users have different positions and purposes. This study proposes an alternative approach to add sentiment annotation at sentence level for assisting users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
抹茶肥肠完成签到,获得积分10
3秒前
脑洞疼应助11采纳,获得10
3秒前
3秒前
5秒前
sheila完成签到,获得积分10
5秒前
5秒前
枫叶的虫子完成签到,获得积分10
6秒前
6秒前
Pooh发布了新的文献求助10
7秒前
7秒前
8秒前
深情安青应助莫非采纳,获得10
9秒前
向阳而生o完成签到,获得积分10
9秒前
xxx发布了新的文献求助10
9秒前
10秒前
llll发布了新的文献求助10
11秒前
yao发布了新的文献求助30
11秒前
12秒前
loski发布了新的文献求助10
12秒前
可爱的函函应助偷乐采纳,获得10
14秒前
清晾油完成签到,获得积分10
14秒前
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
坦率的匪应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
解语花应助科研通管家采纳,获得50
15秒前
czh应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
坦率的匪应助科研通管家采纳,获得10
15秒前
ludov应助科研通管家采纳,获得10
15秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028