Sentiment annotations for reviews: an information quality perspective

计算机科学 情绪分析 注释 质量(理念) 独创性 判决 旅游 透视图(图形) 互联网 情报检索 产品(数学) 数据科学 万维网 自然语言处理 人工智能 定性研究 社会科学 认识论 哲学 社会学 法学 数学 政治学 几何学
作者
Heng‐Li Yang,August F.Y. Chao
出处
期刊:Online Information Review [Emerald Publishing Limited]
卷期号:42 (5): 579-594 被引量:6
标识
DOI:10.1108/oir-04-2017-0114
摘要

Purpose The purpose of this paper is to propose sentiment annotation at sentence level to reduce information overloading while reading product/service reviews in the internet. Design/methodology/approach The keyword-based sentiment analysis is applied for highlighting review sentences. An experiment is conducted for demonstrating its effectiveness. Findings A prototype is built for highlighting tourism review sentences in Chinese with positive or negative sentiment polarity. An experiment results indicates that sentiment annotation can increase information quality and user’s intention to read tourism reviews. Research limitations/implications This study has made two major contributions: proposing the approach of adding sentiment annotation at sentence level of review texts for assisting decision-making; validating the relationships among the information quality constructs. However, in this study, sentiment analysis was conducted on a limited corpus; future research may try a larger corpus. Besides, the annotation system was built on the tourism data. Future studies might try to apply to other areas. Practical implications If the proposed annotation systems become popular, both tourists and attraction providers would obtain benefits. In this era of smart tourism, tourists could browse through the huge amount of internet information more quickly. Attraction providers could understand what are the strengths and weaknesses of their facilities more easily. The application of this sentiment analysis is possible for other languages, especially for non-spaced languages. Originality/value Facing large amounts of data, past researchers were engaged in automatically constructing a compact yet meaningful abstraction of the texts. However, users have different positions and purposes. This study proposes an alternative approach to add sentiment annotation at sentence level for assisting users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
halabouqii发布了新的文献求助10
1秒前
guyuangyy发布了新的文献求助10
2秒前
GarrickO发布了新的文献求助50
2秒前
setmefree发布了新的文献求助10
3秒前
番茄完成签到,获得积分10
6秒前
7秒前
咸鸭蛋完成签到 ,获得积分10
7秒前
9秒前
冯嘉萌完成签到,获得积分20
10秒前
科目三应助暖羊羊Y采纳,获得10
11秒前
11秒前
11秒前
大蜥蜴完成签到,获得积分10
12秒前
丰D完成签到,获得积分10
12秒前
12秒前
Jackylee完成签到,获得积分10
13秒前
13秒前
13秒前
taizhi完成签到,获得积分10
13秒前
天真的冰巧完成签到,获得积分10
15秒前
任性一兰完成签到,获得积分20
15秒前
shinian发布了新的文献求助10
15秒前
小许小许完成签到,获得积分10
15秒前
情怀应助Will采纳,获得10
15秒前
LIU完成签到 ,获得积分10
16秒前
华仔应助zg采纳,获得10
17秒前
17秒前
17秒前
zeena完成签到,获得积分10
17秒前
18秒前
麦子完成签到 ,获得积分10
18秒前
英俊的铭应助lan采纳,获得10
19秒前
xiao发布了新的文献求助20
19秒前
小星星完成签到,获得积分10
20秒前
火狐狸kc完成签到,获得积分10
20秒前
21秒前
吕志才发布了新的文献求助10
21秒前
夏利发布了新的文献求助10
21秒前
22秒前
可乐完成签到,获得积分20
22秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572