Sentiment annotations for reviews: an information quality perspective

计算机科学 情绪分析 注释 质量(理念) 独创性 判决 旅游 透视图(图形) 互联网 情报检索 产品(数学) 数据科学 万维网 自然语言处理 人工智能 定性研究 社会科学 认识论 哲学 社会学 法学 数学 政治学 几何学
作者
Heng‐Li Yang,August F.Y. Chao
出处
期刊:Online Information Review [Emerald (MCB UP)]
卷期号:42 (5): 579-594 被引量:6
标识
DOI:10.1108/oir-04-2017-0114
摘要

Purpose The purpose of this paper is to propose sentiment annotation at sentence level to reduce information overloading while reading product/service reviews in the internet. Design/methodology/approach The keyword-based sentiment analysis is applied for highlighting review sentences. An experiment is conducted for demonstrating its effectiveness. Findings A prototype is built for highlighting tourism review sentences in Chinese with positive or negative sentiment polarity. An experiment results indicates that sentiment annotation can increase information quality and user’s intention to read tourism reviews. Research limitations/implications This study has made two major contributions: proposing the approach of adding sentiment annotation at sentence level of review texts for assisting decision-making; validating the relationships among the information quality constructs. However, in this study, sentiment analysis was conducted on a limited corpus; future research may try a larger corpus. Besides, the annotation system was built on the tourism data. Future studies might try to apply to other areas. Practical implications If the proposed annotation systems become popular, both tourists and attraction providers would obtain benefits. In this era of smart tourism, tourists could browse through the huge amount of internet information more quickly. Attraction providers could understand what are the strengths and weaknesses of their facilities more easily. The application of this sentiment analysis is possible for other languages, especially for non-spaced languages. Originality/value Facing large amounts of data, past researchers were engaged in automatically constructing a compact yet meaningful abstraction of the texts. However, users have different positions and purposes. This study proposes an alternative approach to add sentiment annotation at sentence level for assisting users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助PiPiBoQAQ采纳,获得10
1秒前
春困秋乏完成签到,获得积分10
1秒前
文曲星完成签到 ,获得积分10
1秒前
1秒前
2秒前
TYMY应助Zhao11采纳,获得30
2秒前
阡陌完成签到,获得积分10
2秒前
小二郎应助fy2001采纳,获得30
2秒前
NexusExplorer应助沉思、采纳,获得30
3秒前
Hello应助淡定蓝采纳,获得10
3秒前
一叶扁舟发布了新的文献求助10
3秒前
科目三应助调皮靖琪采纳,获得10
3秒前
3秒前
喵了个咪发布了新的文献求助10
4秒前
13完成签到,获得积分10
4秒前
4秒前
拉布拉多多不多完成签到,获得积分10
4秒前
marinzou完成签到,获得积分10
5秒前
5秒前
阿良发布了新的文献求助10
5秒前
杨逸尔发布了新的文献求助20
5秒前
量子星尘发布了新的文献求助10
5秒前
王二发布了新的文献求助10
5秒前
发论文完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
慈祥的芷云完成签到 ,获得积分10
8秒前
8秒前
9秒前
大模型应助醋酸柠檬采纳,获得10
9秒前
89757发布了新的文献求助10
9秒前
烟花应助腼腆的沛文采纳,获得10
10秒前
10秒前
万能图书馆应助一叶扁舟采纳,获得10
10秒前
zzzzzzz发布了新的文献求助10
11秒前
李爱国应助TIWOSS采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5404697
求助须知:如何正确求助?哪些是违规求助? 4523152
关于积分的说明 14092354
捐赠科研通 4436849
什么是DOI,文献DOI怎么找? 2435295
邀请新用户注册赠送积分活动 1427595
关于科研通互助平台的介绍 1405985