Sentiment annotations for reviews: an information quality perspective

计算机科学 情绪分析 注释 质量(理念) 独创性 判决 旅游 透视图(图形) 互联网 情报检索 产品(数学) 数据科学 万维网 自然语言处理 人工智能 定性研究 社会科学 认识论 哲学 社会学 法学 数学 政治学 几何学
作者
Heng‐Li Yang,August F.Y. Chao
出处
期刊:Online Information Review [Emerald (MCB UP)]
卷期号:42 (5): 579-594 被引量:6
标识
DOI:10.1108/oir-04-2017-0114
摘要

Purpose The purpose of this paper is to propose sentiment annotation at sentence level to reduce information overloading while reading product/service reviews in the internet. Design/methodology/approach The keyword-based sentiment analysis is applied for highlighting review sentences. An experiment is conducted for demonstrating its effectiveness. Findings A prototype is built for highlighting tourism review sentences in Chinese with positive or negative sentiment polarity. An experiment results indicates that sentiment annotation can increase information quality and user’s intention to read tourism reviews. Research limitations/implications This study has made two major contributions: proposing the approach of adding sentiment annotation at sentence level of review texts for assisting decision-making; validating the relationships among the information quality constructs. However, in this study, sentiment analysis was conducted on a limited corpus; future research may try a larger corpus. Besides, the annotation system was built on the tourism data. Future studies might try to apply to other areas. Practical implications If the proposed annotation systems become popular, both tourists and attraction providers would obtain benefits. In this era of smart tourism, tourists could browse through the huge amount of internet information more quickly. Attraction providers could understand what are the strengths and weaknesses of their facilities more easily. The application of this sentiment analysis is possible for other languages, especially for non-spaced languages. Originality/value Facing large amounts of data, past researchers were engaged in automatically constructing a compact yet meaningful abstraction of the texts. However, users have different positions and purposes. This study proposes an alternative approach to add sentiment annotation at sentence level for assisting users.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助花凉采纳,获得10
1秒前
1秒前
小星星668完成签到,获得积分10
1秒前
JJ田叶发布了新的文献求助10
2秒前
2秒前
Singularity举报求助违规成功
2秒前
踏雪寻梅举报求助违规成功
2秒前
不安青牛举报求助违规成功
2秒前
2秒前
3秒前
fann完成签到 ,获得积分10
3秒前
陈胖虎发布了新的文献求助10
4秒前
安陌煜发布了新的文献求助30
5秒前
桐桐应助Sifan采纳,获得10
5秒前
5秒前
KKKkkkkk发布了新的文献求助10
6秒前
6秒前
希望天下0贩的0应助无000采纳,获得10
6秒前
6秒前
34完成签到,获得积分10
6秒前
8秒前
8秒前
卡皮巴拉发布了新的文献求助10
8秒前
11秒前
圣光之城发布了新的文献求助10
11秒前
cqnusq发布了新的文献求助30
12秒前
13秒前
hjx完成签到 ,获得积分10
14秒前
Math123发布了新的文献求助10
16秒前
情怀应助张对对采纳,获得10
16秒前
意安发布了新的文献求助10
17秒前
18秒前
18秒前
Gjq完成签到 ,获得积分10
19秒前
20秒前
嗯呢发布了新的文献求助10
20秒前
21秒前
脑洞疼应助KKKkkkkk采纳,获得10
22秒前
上官若男应助揽星色采纳,获得10
22秒前
充电宝应助晶晶妹妹采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644