Computational Modeling of Aerosol Deposition in Respiratory Tract: A Review

气溶胶 颗粒沉积 呼吸道 医学 沉积(地质) 环境科学 呼吸系统 大气科学 吸入 化学 微粒 粒子(生态学) 气流
作者
Ali Rostami
出处
期刊:Inhalation Toxicology [Informa]
卷期号:21 (4): 262-290 被引量:110
标识
DOI:10.1080/08958370802448987
摘要

This review article is intended to serve as an overview of the current status of the computational tools and approaches available for predicting respiratory-tract dosimetry of inhaled particulate matter. There are two groups of computational models available, depending on the intended use. The whole-lung models are designed to provide deposition prediction for the whole lung, from the oronasal cavities to the pulmonary region. The whole-lung models are generally semi-empirical and hence provide more reliable results but within the range of parameters used for empirical correlations. The local deposition or computational fluid dynamics (CFD)-based models, on the other hand, utilize comprehensive theoretical and computational approaches but are often limited to upper respiratory tracts. They are based on theoretical principles and are applicable to a wider range of parameters, but less accurate. One of the difficulties with modeling of aerosol deposition in human lung is related to the complexity of the airways geometry and the limited morphometric data available. Another difficulty corresponds to simulation of the realistic physiological conditions of lung environment. Furthermore, complex physical and chemical phenomena associated with dense and multicomponent aerosols complicate the modeling tasks. All of these issues are addressed in this review. The progress made in each area in the last three decades and the challenges ahead are discussed along with some suggestions for future direction. The following subjects are covered in this review: introduction, aerosol deposition mechanisms, elements of a computational model, respiratory-tract geometry models, whole-lung models, CFD based models, cigarette smoke deposition models, and conclusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无心的荆发布了新的文献求助10
1秒前
无心的荆发布了新的文献求助10
1秒前
Frieren完成签到 ,获得积分10
2秒前
烁果累累完成签到 ,获得积分10
3秒前
普普发布了新的文献求助10
3秒前
Raine完成签到,获得积分10
3秒前
zhengzhao发布了新的文献求助10
4秒前
wws发布了新的文献求助10
4秒前
YUEYUE完成签到,获得积分10
4秒前
康嘉伟完成签到,获得积分10
5秒前
不配.应助立冏商采纳,获得20
9秒前
CodeCraft应助搞怪半莲采纳,获得10
9秒前
852应助kai采纳,获得10
10秒前
陈永伟发布了新的文献求助10
14秒前
洋洋爱吃枣完成签到 ,获得积分10
18秒前
19秒前
20秒前
儒雅的如松完成签到 ,获得积分10
21秒前
洋子完成签到 ,获得积分10
23秒前
gjy发布了新的文献求助10
26秒前
英俊的铭应助liuzengzhang666采纳,获得10
30秒前
眼睛大醉山完成签到,获得积分10
30秒前
子爵木完成签到 ,获得积分10
30秒前
Akim应助海森堡采纳,获得30
35秒前
隐形曼青应助DUANYALI采纳,获得10
41秒前
传奇3应助哈哈哈嘿采纳,获得10
42秒前
42秒前
想发sci完成签到,获得积分10
44秒前
海森堡发布了新的文献求助30
47秒前
Bingtao_Lian完成签到 ,获得积分10
47秒前
48秒前
吡咯爱成环应助碧蓝一德采纳,获得10
49秒前
Abdurrahman完成签到,获得积分10
49秒前
marongzhi完成签到 ,获得积分10
50秒前
GHHHHHH完成签到,获得积分20
54秒前
DUANYALI发布了新的文献求助10
55秒前
55秒前
搞怪半莲完成签到,获得积分10
56秒前
orixero应助123456采纳,获得10
57秒前
高分求助中
Востребованный временем 2500
Production Logging: Theoretical and Interpretive Elements 2000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Encyclopedia of Mental Health Reference Work 300
脑血管病 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3371549
求助须知:如何正确求助?哪些是违规求助? 2989674
关于积分的说明 8736701
捐赠科研通 2672919
什么是DOI,文献DOI怎么找? 1464249
科研通“疑难数据库(出版商)”最低求助积分说明 677484
邀请新用户注册赠送积分活动 668822