热电效应
材料科学
热电材料
固态
电
光电子学
纳米技术
机械工程
机器学习
工程物理
计算机科学
工程类
电气工程
物理
热力学
作者
Xue Jia,Yanshuai Deng,Xin Bao,Honghao Yao,Shan Li,Li Zhou,Chen Chen,Xinyu Wang,Jun Mao,Feng Cao,Jiehe Sui,Junwei Wu,Cuiping Wang,Qian Zhang,Xingjun Liu
标识
DOI:10.1038/s41524-022-00723-9
摘要
Abstract Thermoelectric materials can be potentially applied to waste heat recovery and solid-state cooling because they allow a direct energy conversion between heat and electricity and vice versa. The accelerated materials design based on machine learning has enabled the systematic discovery of promising materials. Herein we proposed a successful strategy to discover and design a series of promising half-Heusler thermoelectric materials through the iterative combination of unsupervised machine learning with the labeled known half-Heusler thermoelectric materials. Subsequently, optimized zT values of ~0.5 at 925 K for p-type Sc 0.7 Y 0.3 NiSb 0.97 Sn 0.03 and ~0.3 at 778 K for n-type Sc 0.65 Y 0.3 Ti 0.05 NiSb were experimentally achieved on the same parent ScNiSb.
科研通智能强力驱动
Strongly Powered by AbleSci AI