Periodontal bone loss detection based on hybrid deep learning and machine learning models with a user-friendly application

人工智能 支持向量机 计算机科学 卷积神经网络 朴素贝叶斯分类器 深度学习 机器学习 模式识别(心理学) 随机森林 树(集合论) 数学 数学分析
作者
Kubilay Muhammed Sünnetci,Sezer Ulukaya,Ahmet Alkan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:77: 103844-103844 被引量:59
标识
DOI:10.1016/j.bspc.2022.103844
摘要

As artificial intelligence in medical imaging is used to diagnose many diseases, it can also be employed to diagnose whether a person has periodontal bone loss or not. Accurate and early diagnosis performs a vital task in the treatment of the patient’s dental disorder. Therefore, such medical images are known to be an important clinical adjunct. In this manuscript, whether the patient has periodontal bone loss or non-periodontal bone loss is diagnosed employing hybrid artificial intelligence-based systems. Herein, after tagging a total of 1432 images by an expert, we extract 1000 deep image features for each image using AlexNet and SqueezeNet deep learning architectures. On the other hand, we classify these images directly without extracting the image features using the EfficientNetB5 deep learning architecture. First, we categorize AlexNet-based deep image features using the Coarse Tree, Weighted K-Nearest Neighbor (KNN), Gaussian Naïve Bayes, RUSBoosted Trees Ensemble, and Linear Support Vector Machine (SVM) classifiers. Afterward, we classify SqueezeNet-based deep image features using Medium Tree, Gaussian Naïve Bayes, Boosted Trees Ensemble, Coarse KNN, and Medium Gaussian SVM classifiers. With the help of the ten classifiers employed in this study, we also design a user-friendly Graphical User Interface (GUI) application. Thanks to this application, we aim to reduce the workload of experts, save time and help to diagnose dental disorders early. The results show that the best classifiers for AlexNet-based, SqueezeNet-based, and Direct-Convolutional Neural Network (CNN) are Linear SVM, Medium Gaussian SVM, and EfficientNetB5, respectively. Among these classifiers, the best classifier is Linear SVM, and its accuracy, error, sensitivity, specificity, precision, and F1 score values are 81.49%, 18.51%, 84.57%, 79.14%, 75.68%, and 79.88%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
HT发布了新的文献求助10
1秒前
2秒前
ab发布了新的文献求助10
2秒前
zhaohx完成签到,获得积分10
2秒前
2秒前
荒谬发布了新的文献求助10
2秒前
2秒前
石破天惊发布了新的文献求助30
2秒前
Zypher完成签到 ,获得积分10
3秒前
鳗鱼匕发布了新的文献求助10
3秒前
OWEN完成签到,获得积分10
4秒前
4秒前
3129386658发布了新的文献求助10
4秒前
4秒前
zjmm发布了新的文献求助10
4秒前
MiFkuF完成签到 ,获得积分10
4秒前
毛线球球发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
5秒前
李李原上完成签到,获得积分10
5秒前
隐形发布了新的文献求助10
6秒前
彭于晏应助灵允采纳,获得10
6秒前
7秒前
ssy发布了新的文献求助10
7秒前
ypcsjj发布了新的文献求助10
7秒前
8秒前
顾矜应助xlz采纳,获得10
8秒前
沐沐完成签到 ,获得积分10
8秒前
RitaY完成签到,获得积分10
8秒前
micro然完成签到,获得积分10
8秒前
9秒前
9秒前
傻大完成签到,获得积分10
10秒前
11秒前
傻大发布了新的文献求助10
12秒前
orixero应助RitaY采纳,获得10
12秒前
完美世界应助HT采纳,获得10
12秒前
田様应助qq采纳,获得10
13秒前
月亮完成签到,获得积分10
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588119
求助须知:如何正确求助?哪些是违规求助? 4671184
关于积分的说明 14786238
捐赠科研通 4624496
什么是DOI,文献DOI怎么找? 2531592
邀请新用户注册赠送积分活动 1500217
关于科研通互助平台的介绍 1468240