Periodontal bone loss detection based on hybrid deep learning and machine learning models with a user-friendly application

人工智能 支持向量机 计算机科学 卷积神经网络 朴素贝叶斯分类器 深度学习 机器学习 模式识别(心理学) 随机森林 树(集合论) 数学 数学分析
作者
Kubilay Muhammed Sünnetci,Sezer Ulukaya,Ahmet Alkan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:77: 103844-103844 被引量:12
标识
DOI:10.1016/j.bspc.2022.103844
摘要

As artificial intelligence in medical imaging is used to diagnose many diseases, it can also be employed to diagnose whether a person has periodontal bone loss or not. Accurate and early diagnosis performs a vital task in the treatment of the patient’s dental disorder. Therefore, such medical images are known to be an important clinical adjunct. In this manuscript, whether the patient has periodontal bone loss or non-periodontal bone loss is diagnosed employing hybrid artificial intelligence-based systems. Herein, after tagging a total of 1432 images by an expert, we extract 1000 deep image features for each image using AlexNet and SqueezeNet deep learning architectures. On the other hand, we classify these images directly without extracting the image features using the EfficientNetB5 deep learning architecture. First, we categorize AlexNet-based deep image features using the Coarse Tree, Weighted K-Nearest Neighbor (KNN), Gaussian Naïve Bayes, RUSBoosted Trees Ensemble, and Linear Support Vector Machine (SVM) classifiers. Afterward, we classify SqueezeNet-based deep image features using Medium Tree, Gaussian Naïve Bayes, Boosted Trees Ensemble, Coarse KNN, and Medium Gaussian SVM classifiers. With the help of the ten classifiers employed in this study, we also design a user-friendly Graphical User Interface (GUI) application. Thanks to this application, we aim to reduce the workload of experts, save time and help to diagnose dental disorders early. The results show that the best classifiers for AlexNet-based, SqueezeNet-based, and Direct-Convolutional Neural Network (CNN) are Linear SVM, Medium Gaussian SVM, and EfficientNetB5, respectively. Among these classifiers, the best classifier is Linear SVM, and its accuracy, error, sensitivity, specificity, precision, and F1 score values are 81.49%, 18.51%, 84.57%, 79.14%, 75.68%, and 79.88%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NI发布了新的文献求助10
刚刚
1秒前
郭老师发布了新的文献求助10
2秒前
3秒前
明明盛发布了新的文献求助10
3秒前
充电宝应助shyotion采纳,获得10
3秒前
4秒前
CodeCraft应助磊少采纳,获得10
4秒前
Farr完成签到,获得积分10
4秒前
阿州发布了新的文献求助10
5秒前
wanci应助chen采纳,获得10
7秒前
7秒前
小武子发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
10秒前
11秒前
醒醒完成签到,获得积分10
13秒前
13秒前
123发布了新的文献求助10
13秒前
史迪仔完成签到,获得积分10
14秒前
Fengh发布了新的文献求助10
14秒前
今后应助复杂的问玉采纳,获得10
15秒前
16秒前
lzz发布了新的文献求助10
16秒前
dhjic发布了新的文献求助10
17秒前
17秒前
17秒前
Alvess完成签到 ,获得积分10
19秒前
共享精神应助123采纳,获得10
20秒前
大象发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
23秒前
西红柿发布了新的文献求助10
25秒前
大象完成签到,获得积分10
26秒前
26秒前
开朗艳一发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975658
求助须知:如何正确求助?哪些是违规求助? 3519986
关于积分的说明 11200481
捐赠科研通 3256410
什么是DOI,文献DOI怎么找? 1798247
邀请新用户注册赠送积分活动 877490
科研通“疑难数据库(出版商)”最低求助积分说明 806376