Periodontal bone loss detection based on hybrid deep learning and machine learning models with a user-friendly application

人工智能 支持向量机 计算机科学 卷积神经网络 朴素贝叶斯分类器 深度学习 机器学习 模式识别(心理学) 随机森林 树(集合论) 数学 数学分析
作者
Kubilay Muhammed Sünnetci,Sezer Ulukaya,Ahmet Alkan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:77: 103844-103844 被引量:12
标识
DOI:10.1016/j.bspc.2022.103844
摘要

As artificial intelligence in medical imaging is used to diagnose many diseases, it can also be employed to diagnose whether a person has periodontal bone loss or not. Accurate and early diagnosis performs a vital task in the treatment of the patient’s dental disorder. Therefore, such medical images are known to be an important clinical adjunct. In this manuscript, whether the patient has periodontal bone loss or non-periodontal bone loss is diagnosed employing hybrid artificial intelligence-based systems. Herein, after tagging a total of 1432 images by an expert, we extract 1000 deep image features for each image using AlexNet and SqueezeNet deep learning architectures. On the other hand, we classify these images directly without extracting the image features using the EfficientNetB5 deep learning architecture. First, we categorize AlexNet-based deep image features using the Coarse Tree, Weighted K-Nearest Neighbor (KNN), Gaussian Naïve Bayes, RUSBoosted Trees Ensemble, and Linear Support Vector Machine (SVM) classifiers. Afterward, we classify SqueezeNet-based deep image features using Medium Tree, Gaussian Naïve Bayes, Boosted Trees Ensemble, Coarse KNN, and Medium Gaussian SVM classifiers. With the help of the ten classifiers employed in this study, we also design a user-friendly Graphical User Interface (GUI) application. Thanks to this application, we aim to reduce the workload of experts, save time and help to diagnose dental disorders early. The results show that the best classifiers for AlexNet-based, SqueezeNet-based, and Direct-Convolutional Neural Network (CNN) are Linear SVM, Medium Gaussian SVM, and EfficientNetB5, respectively. Among these classifiers, the best classifier is Linear SVM, and its accuracy, error, sensitivity, specificity, precision, and F1 score values are 81.49%, 18.51%, 84.57%, 79.14%, 75.68%, and 79.88%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
霍嘉文完成签到,获得积分10
刚刚
1秒前
bluesiryao发布了新的文献求助10
1秒前
李爱国应助23采纳,获得10
2秒前
2秒前
SHJ发布了新的文献求助10
2秒前
开心的幻柏完成签到 ,获得积分10
2秒前
大神完成签到 ,获得积分20
2秒前
2秒前
3秒前
3秒前
闪闪的YOSH完成签到,获得积分10
3秒前
Jimmy完成签到,获得积分10
3秒前
仁爱书白完成签到,获得积分10
4秒前
4秒前
孤独的珩发布了新的文献求助10
5秒前
孙悦完成签到,获得积分10
6秒前
lu完成签到,获得积分10
6秒前
Rachel发布了新的文献求助10
6秒前
Jimmy发布了新的文献求助10
6秒前
丘比特应助隐形的易巧采纳,获得10
6秒前
仁爱书白发布了新的文献求助10
7秒前
善学以致用应助zhui采纳,获得10
7秒前
7秒前
7秒前
小蘑菇应助拼搏起眸采纳,获得10
7秒前
山止川行完成签到 ,获得积分10
7秒前
7秒前
8秒前
okghy发布了新的文献求助10
8秒前
zcydbttj2011完成签到 ,获得积分10
8秒前
在水一方应助哈哈哈采纳,获得10
8秒前
8秒前
优美元枫完成签到,获得积分10
9秒前
10秒前
赵胜男完成签到 ,获得积分10
10秒前
11秒前
共享精神应助坚强的樱采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794