DroidMalwareDetector: A novel Android malware detection framework based on convolutional neural network

恶意软件 计算机科学 Android恶意软件 Android(操作系统) 卷积神经网络 机器学习 人工智能 操作系统
作者
Abdullah Talha Kabakuş
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:206: 117833-117833 被引量:36
标识
DOI:10.1016/j.eswa.2022.117833
摘要

• The accuracy of the proposed model was calculated as high as 0.9 . • A novel 1-dimensional CNN model was proposed. • The features were automatically selected thanks to the proposed model. • The experiments were conducted on the de facto datasets. • We shed light on the insights of Android malware through the conducted experiments. Smartphones have become an integral part of our daily lives thanks to numerous reasons. While benefitting from what they offer, it is critical to be aware of the existence of malware in the Android ecosystem and be away from them. To this end, an end-to-end and highly effective Android malware detection framework based on CNN, namely, DroidMalwareDetector , was proposed within this study. Unlike most of the related work, DroidMalwareDetector was specifically designed to ( i ) automate feature extraction and selection, ( ii ) propose a novel CNN that operates with 1 -dimensional data, and ( iii ) use intents and API calls alongside the widely used permissions to perform comprehensive malware analysis. The proposed framework was trained and evaluated on the constructed dataset, which consisted of 14 , 386 apps from the de-facto standard datasets. The proposed framework’s efficiency in terms of distinguishing malware from benign apps was revealed thanks to the conducted experiments. According to the experimental result, the accuracy of the proposed framework was calculated as high as 0.9 , which was higher than the accuracy values obtained from a wide range of machine learning algorithms. The insights which were gained through the conducted experiments were revealed as another contribution to the research field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shirley发布了新的文献求助10
刚刚
小柚子发布了新的文献求助10
刚刚
Superman完成签到 ,获得积分10
1秒前
joey完成签到,获得积分10
1秒前
Orange应助Rambo采纳,获得10
1秒前
1秒前
kaka091完成签到,获得积分10
1秒前
1111_bb发布了新的文献求助10
2秒前
科学家完成签到,获得积分10
2秒前
y彤发布了新的文献求助10
2秒前
ccc发布了新的文献求助10
2秒前
嘿哈完成签到,获得积分10
2秒前
lz完成签到,获得积分10
3秒前
4秒前
彭于晏应助洛伊儿采纳,获得10
4秒前
5秒前
6秒前
天璇完成签到,获得积分10
6秒前
科学家发布了新的文献求助10
6秒前
6秒前
醉熏的灵完成签到 ,获得积分10
7秒前
辉辉完成签到,获得积分10
8秒前
一李子真甜完成签到,获得积分10
8秒前
科目三应助ldx采纳,获得10
9秒前
田様应助wujinliang采纳,获得10
9秒前
无风发布了新的文献求助20
10秒前
10秒前
天真的凡霜完成签到,获得积分10
10秒前
英勇的白竹完成签到,获得积分10
10秒前
keke发布了新的文献求助10
10秒前
2hi完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
CodeCraft应助李思言采纳,获得10
11秒前
李禾完成签到,获得积分10
11秒前
惠嘟嘟完成签到,获得积分10
11秒前
11秒前
108完成签到,获得积分10
11秒前
11秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147582
求助须知:如何正确求助?哪些是违规求助? 2798713
关于积分的说明 7830993
捐赠科研通 2455488
什么是DOI,文献DOI怎么找? 1306841
科研通“疑难数据库(出版商)”最低求助积分说明 627934
版权声明 601587