化学
铱
催化作用
纳米颗粒
氮气
Atom(片上系统)
金属
甲酸
无机化学
有机化学
纳米技术
材料科学
计算机科学
嵌入式系统
作者
Zhi Li,Yuanjun Chen,Shufang Ji,Yan Tang,Wenxing Chen,Ang Li,Jie Zhao,Yu Xiong,Yuen Wu,Yue Gong,Tao Yao,Wei Liu,Lirong Zheng,Juncai Dong,Yu Wang,Zhongbin Zhuang,Wei Xing,Chun‐Ting He,Chao Peng,Weng‐Chon Cheong
出处
期刊:Nature Chemistry
[Nature Portfolio]
日期:2020-06-15
卷期号:12 (8): 764-772
被引量:577
标识
DOI:10.1038/s41557-020-0473-9
摘要
Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host–guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M1/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir1/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 $${{{\rm{A}}\,{\rm{mg}}^{-1}_{{\rm{Ir}}}}}$$ whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10−3 $${{{\rm{A}}\,{\rm{mg}}^{-1}_{{\rm{Ir}}}}}$$). The activity of Ir1/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir1/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir1/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst. Single-atom catalysts maximize metal atom efficiency and exhibit properties that can be considerably different to their nanoparticle equivalent. Now a general host–guest strategy to make various single-atom catalysts on nitrogen-doped carbon has been developed; the iridium variant electrocatalyses the formic acid oxidation reaction with high mass activity and displays high tolerance to CO poisoning.
科研通智能强力驱动
Strongly Powered by AbleSci AI