规范化(社会学)
生物导体
数据库规范化
计算机科学
数据挖掘
人工智能
生物
模式识别(心理学)
基因
人类学
生物化学
社会学
出处
期刊:Methods in molecular biology
日期:2021-01-01
卷期号:: 303-329
被引量:4
标识
DOI:10.1007/978-1-0716-1307-8_17
摘要
Normalization is an important step in the analysis of single-cell RNA-seq data. While no single method outperforms all others in all datasets, the choice of normalization can have profound impact on the results. Data-driven metrics can be used to rank normalization methods and select the best performers. Here, we show how to use R/Bioconductor to calculate normalization factors, apply them to compute normalized data, and compare several normalization approaches. Finally, we briefly show how to perform downstream analysis steps on the normalized data.
科研通智能强力驱动
Strongly Powered by AbleSci AI