亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship

人工智能 计算机科学 人工神经网络 相关性(法律) 化学信息学 抽象 机器学习 集合(抽象数据类型) 深度学习 生物信息学 政治学 生物 认识论 哲学 程序设计语言 法学
作者
Maciej Staszak,Katarzyna Staszak,Karolina Wieszczycka,Anna Bajek,Krzysztof Roszkowski,Bartosz Tylkowski
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:12 (2) 被引量:83
标识
DOI:10.1002/wcms.1568
摘要

Abstract The paper presents a comprehensive overview of the use of artificial intelligence (AI) systems in drug design. Neural networks, which are one of the systems employed in AI, are used to identify chemical structures that can have medical relevance. Successful training of neural networks must be preceded by the acquisition of relevant information about chemical compounds, functional groups, and their possible biological activity. In general, a neural network requires a large set of training data, which must contain information about the chemical structure–biological activity relationship. The data can come from experimental measurements, but can also be generated using appropriate quantum models. In many of the studies presented below, authors showed a significant potential of neural networks to produce generalizations based on even relatively narrow training data. Despite the fact that neural network systems have been known for more than 40 years, it is only recently that they have seen rapid development due to the wider availability of computing power. In recent years, there has been a growing interest in deep learning techniques, bringing network modeling to a new level of abstraction. Deep learning allows combining what seems to be causally distant phenomena and effects, and to associate facts in a way resembling the human mind. This article is categorized under: Computer and Information Science > Chemoinformatics
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
任性的冷梅完成签到,获得积分10
3秒前
5秒前
7秒前
唯梦完成签到 ,获得积分10
7秒前
Tuesday完成签到 ,获得积分10
7秒前
小野发布了新的文献求助10
12秒前
舒服的幻梅完成签到 ,获得积分10
18秒前
Otter完成签到,获得积分10
18秒前
20秒前
dxwy完成签到,获得积分10
27秒前
瓜子完成签到 ,获得积分10
28秒前
Candice应助星远采纳,获得10
30秒前
木子水告完成签到,获得积分10
32秒前
儒雅的若翠完成签到,获得积分10
32秒前
高兴翅膀应助科研通管家采纳,获得10
34秒前
杳鸢应助科研通管家采纳,获得10
34秒前
杳鸢应助科研通管家采纳,获得10
34秒前
34秒前
CodeCraft应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
Owen应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
36秒前
51秒前
潜龙完成签到,获得积分10
1分钟前
叶枫完成签到 ,获得积分10
1分钟前
1分钟前
彭栋完成签到,获得积分10
1分钟前
Lancer1034发布了新的文献求助30
1分钟前
1分钟前
独特秋烟完成签到,获得积分10
1分钟前
1分钟前
cccc完成签到,获得积分10
1分钟前
英俊的铭应助南与晚霞采纳,获得10
1分钟前
悄悄是心上的肖肖完成签到 ,获得积分10
1分钟前
上官若男应助Lancer1034采纳,获得30
1分钟前
淡定成风完成签到,获得积分10
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880883
关于积分的说明 8217231
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377761
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623314