材料科学
密度泛函理论
相(物质)
凝聚态物理
物理
化学
计算化学
量子力学
作者
Daniel Díaz-Anichtchenko,Lourdes Gracia,Daniel Errandonea
出处
期刊:RSC Advances
[The Royal Society of Chemistry]
日期:2021-01-01
卷期号:11 (18): 10401-10415
被引量:10
摘要
We report a study of the high-pressure behavior of the structural and electronic properties of Zn2V2O7 by means of first-principle calculations using the CRYSTAL code. Three different approaches have been used, finding that the Becke-Lee-Yang-Parr functional is the one that best describes Zn2V2O7. The reported calculations contribute to the understanding of previous published experiments. They support the existence of three phase transitions for pressures smaller than 6 GPa. The crystal structure of the different high-pressure phases is reported. We have also made a systematic study of the electronic band-structure, determining the band-gap and its pressure dependence for the different polymorphs. The reported results are compared to previous experimental studies. All the polymorphs of Zn2V2O7 have been found to have a wide band gap, with band-gap energies in the near-ultraviolet region of the electromagnetic spectrum.
科研通智能强力驱动
Strongly Powered by AbleSci AI