石墨烯
假电容
超级电容器
材料科学
氧化还原
醌
对苯二酚
纳米技术
电容
电极
化学工程
化学
有机化学
工程类
物理化学
冶金
作者
Yuhang Jia,Shaopei Yang,Fuyao Huang,Daping Hu,Runhai Wu,Chenliang Gong,Xue Wang,Yuman Dong,Pengcheng Du
标识
DOI:10.1016/j.est.2023.108124
摘要
As a well-known two-dimensional material, graphene is widely used as an electrode material in energy storage devices. However, the tendency of the agglomeration or restacking of graphene sheets limit the properties. To overcome this issue, redox-active molecules can be introduced that inhibit the stacking of graphene sheets and impart excellent pseudocapacitance properties. In this study, we design a three-dimensional (3D) graphene network anchored with redox-active 2,5-(di-p-phenylenediamine)-1,4-benzoquinone (DBP) and hydroquinone (HQ) (DFGN) using a facile one-step hydrothermal process. The covalent binding and absorption between redox-active molecules and graphene sheets reduce restacking and enable promising pseudocapacitance through reversible faradic reactions of quinone and aniline structures. Among all the samples, DFGN-1 shows the best specific capacitance (667.3 F/g at 1 A/g), high-rate capability (89.2 % even up to 50 A/g), and good cycling stability. Furthermore, DFGN-1 is also employed as an electrode material to construct flexible solid-state supercapacitors (FSSCs), which exhibit great specific capacitance (441 F/g at 0.5 A/g), excellent cycling stability (90.6 % after 10,000 cycles at 10 A/g) and high-energy density of 9.29 Wh/kg at a power density of 96.22 W/kg. Interestingly, FSSCs also display great mechanical flexibility in bending and twisting states and extraordinary mechanical durability even after being bent 5000 times. Overall, double redox-active quinone molecules functionalized 3D graphene network provides a novel tactic to construct promising potential electrodes in energy storage applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI