Low-Light Image Enhancement by Retinex-Based Algorithm Unrolling and Adjustment

计算机科学 水准点(测量) 人工智能 杠杆(统计) 超参数 可解释性 深度学习 颜色恒定性 先验概率 启发式 强化学习 算法 机器学习 图像(数学) 贝叶斯概率 操作系统 地理 大地测量学
作者
Xinyi Liu,Qi Xie,Qian Zhao,Hong Wang,Deyu Meng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:30
标识
DOI:10.1109/tnnls.2023.3289626
摘要

Low-light image enhancement (LIE) has attracted tremendous research interests in recent years. Retinex theory-based deep learning methods, following a decomposition-adjustment pipeline, have achieved promising performance due to their physical interpretability. However, existing Retinex-based deep learning methods are still suboptimal, failing to leverage useful insights from traditional approaches. Meanwhile, the adjustment step is either oversimplified or overcomplicated, resulting in unsatisfactory performance in practice. To address these issues, we propose a novel deep-learning framework for LIE. The framework consists of a decomposition network (DecNet) inspired by algorithm unrolling and adjustment networks considering both global and local brightness. The algorithm unrolling allows the integration of both implicit priors learned from data and explicit priors inherited from traditional methods, facilitating better decomposition. Meanwhile, considering global and local brightness guides the design of effective yet lightweight adjustment networks. Moreover, we introduce a self-supervised fine-tuning strategy that achieves promising performance without manual hyperparameter tuning. Extensive experiments on benchmark LIE datasets demonstrate the superiority of our approach over existing state-of-the-art methods both quantitatively and qualitatively. Code is available at https://github.com/Xinyil256/RAUNA2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruochenzu发布了新的文献求助10
刚刚
fusheng完成签到 ,获得积分10
9秒前
浮生完成签到 ,获得积分10
14秒前
xinjie完成签到,获得积分10
16秒前
Will完成签到,获得积分10
21秒前
cuddly完成签到 ,获得积分10
22秒前
掉头发的小白完成签到,获得积分10
23秒前
不想看文献完成签到 ,获得积分10
26秒前
27秒前
当女遇到乔完成签到 ,获得积分10
27秒前
独行者完成签到,获得积分10
28秒前
眼睛大的电脑完成签到,获得积分10
28秒前
30秒前
敏敏发布了新的文献求助10
31秒前
木木完成签到 ,获得积分10
32秒前
量子星尘发布了新的文献求助10
32秒前
JamesPei应助科研通管家采纳,获得10
33秒前
彭于晏应助科研通管家采纳,获得10
33秒前
如意2023完成签到 ,获得积分10
33秒前
fomo完成签到,获得积分10
37秒前
nagi发布了新的文献求助10
40秒前
jfeng完成签到,获得积分10
42秒前
JN完成签到,获得积分10
50秒前
忐忑的书桃完成签到 ,获得积分10
51秒前
qaplay完成签到 ,获得积分0
51秒前
友好语风完成签到,获得积分10
52秒前
CLTTTt完成签到,获得积分10
53秒前
yk完成签到,获得积分10
55秒前
甜美的初蓝完成签到 ,获得积分10
59秒前
早安完成签到 ,获得积分10
1分钟前
初昀杭完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
LIU完成签到 ,获得积分10
1分钟前
1分钟前
nianshu完成签到 ,获得积分0
1分钟前
starwan完成签到 ,获得积分10
1分钟前
松松发布了新的文献求助20
1分钟前
hooddy123459发布了新的文献求助10
1分钟前
wenhuanwenxian完成签到 ,获得积分10
1分钟前
happy完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022