Low-Light Image Enhancement by Retinex-Based Algorithm Unrolling and Adjustment

计算机科学 水准点(测量) 人工智能 杠杆(统计) 超参数 可解释性 深度学习 颜色恒定性 先验概率 启发式 强化学习 算法 机器学习 图像(数学) 贝叶斯概率 大地测量学 地理 操作系统
作者
Xinyi Liu,Qi Xie,Qian Zhao,Hong Wang,Deyu Meng
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:30
标识
DOI:10.1109/tnnls.2023.3289626
摘要

Low-light image enhancement (LIE) has attracted tremendous research interests in recent years. Retinex theory-based deep learning methods, following a decomposition-adjustment pipeline, have achieved promising performance due to their physical interpretability. However, existing Retinex-based deep learning methods are still suboptimal, failing to leverage useful insights from traditional approaches. Meanwhile, the adjustment step is either oversimplified or overcomplicated, resulting in unsatisfactory performance in practice. To address these issues, we propose a novel deep-learning framework for LIE. The framework consists of a decomposition network (DecNet) inspired by algorithm unrolling and adjustment networks considering both global and local brightness. The algorithm unrolling allows the integration of both implicit priors learned from data and explicit priors inherited from traditional methods, facilitating better decomposition. Meanwhile, considering global and local brightness guides the design of effective yet lightweight adjustment networks. Moreover, we introduce a self-supervised fine-tuning strategy that achieves promising performance without manual hyperparameter tuning. Extensive experiments on benchmark LIE datasets demonstrate the superiority of our approach over existing state-of-the-art methods both quantitatively and qualitatively. Code is available at https://github.com/Xinyil256/RAUNA2023.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WQY完成签到,获得积分10
2秒前
wanci应助今夜无人入眠采纳,获得10
3秒前
4秒前
李爱国应助杰森斯坦虎采纳,获得10
5秒前
5秒前
5秒前
wjh完成签到,获得积分10
6秒前
9秒前
研友_89jWGL发布了新的文献求助10
11秒前
xcf6653发布了新的文献求助10
11秒前
11秒前
13秒前
勤劳绿毛龟完成签到,获得积分10
14秒前
传奇3应助yulian采纳,获得10
15秒前
大栗发布了新的文献求助30
15秒前
15秒前
zzr发布了新的文献求助10
17秒前
18秒前
kcmat发布了新的文献求助10
20秒前
斯文败类应助zzr采纳,获得10
20秒前
猫和完成签到,获得积分10
20秒前
boymin2015完成签到,获得积分10
22秒前
23秒前
23秒前
科研通AI5应助renpp822采纳,获得20
23秒前
CipherSage应助Ingram采纳,获得50
24秒前
25秒前
我恨面条子完成签到 ,获得积分10
26秒前
猫和发布了新的文献求助10
26秒前
yulian发布了新的文献求助10
28秒前
29秒前
30秒前
深情安青应助琥珀主采纳,获得10
30秒前
澳澳发布了新的文献求助10
31秒前
费雪卉应助cqnuly采纳,获得10
31秒前
Orange应助欣慰的茉莉采纳,获得10
32秒前
一只小可爱完成签到,获得积分10
33秒前
boymin2015发布了新的文献求助10
35秒前
mascot0111完成签到,获得积分10
36秒前
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672767
求助须知:如何正确求助?哪些是违规求助? 3228872
关于积分的说明 9782477
捐赠科研通 2939308
什么是DOI,文献DOI怎么找? 1610825
邀请新用户注册赠送积分活动 760740
科研通“疑难数据库(出版商)”最低求助积分说明 736199