Thermal transports of 2D phosphorous carbides by machine learning molecular dynamics simulations

分子动力学 热的 碳化物 材料科学 动力学(音乐) 化学物理 热力学 复合材料 物理 计算化学 化学 声学
作者
Chenyang Cao,Shuo Cao,Yuan-Xu Zhu,Haikuan Dong,Yanzhou Wang,Ping Qian
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:224: 125359-125359 被引量:3
标识
DOI:10.1016/j.ijheatmasstransfer.2024.125359
摘要

Carbon phosphide is a newly discovered two-dimensional semiconductor material which wrinkles and has a significant carrier mobility. Due to lack an accurate force field, the use of molecular dynamics to study its phonon-dominated thermal conductivity which lead to inaccurate results. At present, the use of machine learning to construct a high-precision force field has become the mainstream research method to solve this problem. The main work of this study is to construct a comprehensive training sets for Phosphorus-Doped Graphene (PCn) (n = 3, 5, 6) and to use the fitted potential to calculate the related thermal properties. The research found that (PC5) exhibited anisotropic behavior, with a thermal conductivity of 106.6 Wm−1 K−1 in the y-direction and 63.6 Wm−1 K−1 in the x-direction. In comparison, (PC6) and (PC3) showed isotropic behavior, with thermal conductivity of approximately 104 Wm−1 K−1 and 76.83 Wm−1 K−1, respectively. Compared to monolayer graphene, the lower thermal conductivity of PCn is mainly attributed to phonon-phonon scattering effects, which are limited by the regular wrinkled structure. Additionally, low-frequency phonon have been found to have a significant impact on the thermal performance of PCn. Furthermore, we investigated the influence of uniaxial strain on the PC6 and observed an increase in the thermal conductivity with increasing strain. This study used key computational and analytical techniques, including phonon dispersion relations, homogeneous nonequilibrium molecular dynamics method, spectral thermal conductivity analysis. These findings provide a theoretical basis for understanding the thermal transport properties of PCn and will guide its potential applications value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Garra9822完成签到 ,获得积分10
2秒前
ypl发布了新的文献求助10
2秒前
3秒前
荷塘月色完成签到,获得积分10
3秒前
华仔应助高贵芷波采纳,获得10
3秒前
4秒前
自信又菡发布了新的文献求助10
4秒前
4秒前
MaoMao完成签到,获得积分20
4秒前
渡劫完成签到,获得积分10
4秒前
小白菜完成签到 ,获得积分10
5秒前
欣5完成签到,获得积分10
5秒前
Lucas应助小猪采纳,获得10
7秒前
xcf完成签到,获得积分20
7秒前
小孙完成签到,获得积分10
7秒前
8秒前
胖心怡完成签到,获得积分10
8秒前
复杂瑛完成签到 ,获得积分10
9秒前
10秒前
碗碗完成签到,获得积分10
11秒前
lz完成签到,获得积分10
12秒前
蝈蝈发布了新的文献求助10
12秒前
lilymozi完成签到,获得积分10
12秒前
13秒前
优美巧曼发布了新的文献求助10
13秒前
科研通AI5应助天意不可违采纳,获得10
13秒前
华仔应助阿坤采纳,获得10
13秒前
森sen完成签到,获得积分20
14秒前
汉堡包应助ypl采纳,获得10
14秒前
wanhe发布了新的文献求助10
14秒前
赘婿应助zheng能量采纳,获得10
15秒前
15秒前
高贵芷波发布了新的文献求助10
16秒前
LIU发布了新的文献求助10
17秒前
Xii完成签到 ,获得积分10
17秒前
17秒前
17秒前
19秒前
熬熬就出头了完成签到,获得积分10
19秒前
田様应助天空之城采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546536
求助须知:如何正确求助?哪些是违规求助? 3123667
关于积分的说明 9356348
捐赠科研通 2822331
什么是DOI,文献DOI怎么找? 1551314
邀请新用户注册赠送积分活动 723326
科研通“疑难数据库(出版商)”最低求助积分说明 713699