Experimental Investigation of the Influence of Various Wear Parameters on the Tribological Characteristics of AZ91 Hybrid Composites and their Machine Learning Modelling

材料科学 复合材料 分层(地质) 梯度升压 摩擦学 析因实验 实验设计 磨损(机械) 响应面法 阶乘 随机森林 机器学习 计算机科学 数学 统计 古生物学 构造学 俯冲 生物 数学分析
作者
Dhanunjay Kumar Ammisetti,S. S. Harish Kruthiventi
出处
期刊:Journal of tribology [ASME International]
卷期号:146 (5) 被引量:3
标识
DOI:10.1115/1.4064397
摘要

Abstract In the current work, the AZ91 hybrid composites are fabricated through the utilization of the stir casting technique, incorporating aluminum oxide (Al2O3) and graphene (Gr) as reinforcing elements. Wear behavior of the AZ91/Gr/Al2O3 composites was examined with the pin-on-disc setup under dry conditions. In this study, the factors such as reinforcement percentage (R), load (L), velocity (V), and sliding distance (D) have been chosen to investigate their impact on the wear-rate (WR) and coefficient of friction (COF). This study utilizes a full factorial design to conduct experiments. The experimental data was critically analyzed to examine the impact of each wear parameter (i.e., R, L, V, and D) on the WR and COF of composites. The wear mechanisms at the extreme conditions of maximum and minimum wear rates are also investigated by utilizing the scanning electron microscope (SEM) images of specimen's surface. The SEM study revealed the presence of delamination, abrasion, oxidation, and adhesion mechanisms on the surface experiencing wear. Machine learning (ML) models, such as decision tree (DT), random forest (RF), and gradient boosting regression (GBR), are employed to create a robust prediction model for predicting output responses based on input variables. The prediction model was trained and tested with 95% and 5% experimental data points, respectively. It was noticed that among all the models, the GBR model exhibited superior performance in predicting WR, with mean square error (MSE) = 0.0398, root-mean-square error (RMSE) = 0.1996, mean absolute error (MAE) = 0.1673, and R2 = 98.89, surpassing the accuracy of other models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮曼云完成签到,获得积分10
1秒前
一石完成签到,获得积分10
1秒前
云云完成签到 ,获得积分10
2秒前
jiangmax完成签到,获得积分10
3秒前
lulu666完成签到 ,获得积分10
3秒前
意意发布了新的文献求助10
3秒前
houbu26发布了新的文献求助10
3秒前
xiao完成签到,获得积分10
3秒前
4秒前
慕青应助张立佳采纳,获得10
4秒前
科研通AI2S应助南风知我意采纳,获得10
4秒前
5秒前
6秒前
郜雨寒发布了新的文献求助10
6秒前
初余发布了新的文献求助10
6秒前
7秒前
荣弟发布了新的文献求助10
7秒前
李健的粉丝团团长应助rumn采纳,获得10
8秒前
yiy发布了新的文献求助10
8秒前
LiuLiu发布了新的文献求助10
8秒前
9秒前
A.y.w完成签到,获得积分10
10秒前
bai发布了新的文献求助10
11秒前
Akim应助ccc采纳,获得10
11秒前
11秒前
12秒前
12秒前
bycq发布了新的文献求助20
13秒前
英姑应助houbu26采纳,获得10
13秒前
13秒前
狼宝发布了新的文献求助10
13秒前
13秒前
clarejazir发布了新的文献求助10
14秒前
16秒前
16秒前
星辰大海应助受伤白昼采纳,获得10
17秒前
张立佳发布了新的文献求助10
17秒前
丹青发布了新的文献求助10
17秒前
文静千凡完成签到,获得积分10
17秒前
17秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222804
求助须知:如何正确求助?哪些是违规求助? 2871564
关于积分的说明 8176070
捐赠科研通 2538543
什么是DOI,文献DOI怎么找? 1370632
科研通“疑难数据库(出版商)”最低求助积分说明 645818
邀请新用户注册赠送积分活动 619706