Multi-step forecasting of dissolved oxygen in River Ganga based on CEEMDAN-AdaBoost-BiLSTM-LSTM model

阿达布思 人工智能 计算机科学 模式识别(心理学) 支持向量机
作者
Neha Pant,Durga Toshniwal,Bhola R. Gurjar
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-61910-w
摘要

Abstract Accurate prediction of Dissolved Oxygen (DO) is an integral part of water resource management. This study proposes a novel approach combining Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) with AdaBoost and deep learning for multi-step forecasting of DO. CEEMDAN generates Intrinsic Mode Functions (IMFs) with different frequencies, capturing non-linear and non-stationary characteristics of the data. The high-frequency and medium-frequency IMFs, characterized by complex patterns and frequent changes over time, are predicted using Adaboost with Bidirectional Long Short-Term Memory (BiLSTM) as the base estimator. The low-frequency IMFs, characterized by relatively simple patterns, are predicted using standalone Long Short-Term Memory (LSTM). The proposed CEEMDAN-AdaBoost-BiLSTM-LSTM model is tested on data from ten stations of river Ganga. We compare the results with six models without decomposition and four models utilizing decomposition. Experimental results show that using a tailored prediction technique based on each IMF’s distinctive features leads to more accurate forecasts. CEEMDAN-AdaBoost-BiLSTM-LSTM outperforms CEEMDAN-BiLSTM with an average improvement of 25.458% for RMSE and 37.390% for MAE. Compared with CEEMDAN-AdaBoost-BiLSTM, an average improvement of 20.779% for RMSE and 28.921% for MAE is observed. Diebold-Mariano test and t-test suggest a statistically significant difference in performance between the proposed and compared models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助顺利涵菡采纳,获得10
1秒前
2秒前
Buduan完成签到,获得积分10
3秒前
3秒前
Ma关注了科研通微信公众号
5秒前
5秒前
6秒前
畅快城发布了新的文献求助10
6秒前
复成完成签到 ,获得积分10
7秒前
yinle关注了科研通微信公众号
7秒前
aktuell完成签到,获得积分10
7秒前
7秒前
ANG发布了新的文献求助10
7秒前
Lucas应助2116564采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
清辉夜凝发布了新的文献求助10
8秒前
可爱的函函应助Shrine采纳,获得10
9秒前
recovery应助Aprilapple采纳,获得10
10秒前
baonali发布了新的文献求助10
11秒前
123发布了新的文献求助30
11秒前
小晓发布了新的文献求助10
11秒前
科研通AI2S应助Andema采纳,获得10
11秒前
13秒前
13秒前
16秒前
16秒前
18秒前
李健应助假发君采纳,获得10
19秒前
20秒前
KIORking发布了新的文献求助10
20秒前
落忆发布了新的文献求助10
20秒前
tengfei完成签到 ,获得积分10
20秒前
yinle发布了新的文献求助10
21秒前
21秒前
Ma发布了新的文献求助10
21秒前
21秒前
shensiang完成签到,获得积分10
22秒前
2116564发布了新的文献求助10
22秒前
23秒前
DZ完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174