Multi-step forecasting of dissolved oxygen in River Ganga based on CEEMDAN-AdaBoost-BiLSTM-LSTM model

阿达布思 人工智能 计算机科学 模式识别(心理学) 支持向量机
作者
Neha Pant,Durga Toshniwal,Bhola R. Gurjar
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:3
标识
DOI:10.1038/s41598-024-61910-w
摘要

Abstract Accurate prediction of Dissolved Oxygen (DO) is an integral part of water resource management. This study proposes a novel approach combining Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) with AdaBoost and deep learning for multi-step forecasting of DO. CEEMDAN generates Intrinsic Mode Functions (IMFs) with different frequencies, capturing non-linear and non-stationary characteristics of the data. The high-frequency and medium-frequency IMFs, characterized by complex patterns and frequent changes over time, are predicted using Adaboost with Bidirectional Long Short-Term Memory (BiLSTM) as the base estimator. The low-frequency IMFs, characterized by relatively simple patterns, are predicted using standalone Long Short-Term Memory (LSTM). The proposed CEEMDAN-AdaBoost-BiLSTM-LSTM model is tested on data from ten stations of river Ganga. We compare the results with six models without decomposition and four models utilizing decomposition. Experimental results show that using a tailored prediction technique based on each IMF’s distinctive features leads to more accurate forecasts. CEEMDAN-AdaBoost-BiLSTM-LSTM outperforms CEEMDAN-BiLSTM with an average improvement of 25.458% for RMSE and 37.390% for MAE. Compared with CEEMDAN-AdaBoost-BiLSTM, an average improvement of 20.779% for RMSE and 28.921% for MAE is observed. Diebold-Mariano test and t-test suggest a statistically significant difference in performance between the proposed and compared models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
善学以致用应助薛华倩采纳,获得10
4秒前
huqingtao完成签到,获得积分10
4秒前
了了完成签到,获得积分10
4秒前
5秒前
5秒前
666完成签到,获得积分10
6秒前
9秒前
10秒前
星辰大海应助樱桃窝窝头采纳,获得10
11秒前
258369完成签到,获得积分10
12秒前
13秒前
14秒前
Sunwenrui发布了新的文献求助10
15秒前
薛华倩发布了新的文献求助10
19秒前
白白SAMA123发布了新的文献求助10
19秒前
19秒前
昏睡的飞机完成签到,获得积分10
19秒前
20秒前
21秒前
23秒前
miaojuly发布了新的文献求助10
23秒前
共享精神应助追寻筮采纳,获得10
23秒前
24秒前
莫歌完成签到 ,获得积分10
24秒前
2889580752发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
杨冠文发布了新的文献求助10
25秒前
HOME发布了新的文献求助10
27秒前
liz_应助努力工作的人采纳,获得10
28秒前
Lycerdoctor发布了新的文献求助10
28秒前
东瓜魔法师完成签到,获得积分10
28秒前
杨冠文完成签到,获得积分10
30秒前
30秒前
Owen应助肖肖采纳,获得10
31秒前
han应助薛华倩采纳,获得10
32秒前
Rational完成签到,获得积分10
32秒前
祁i应助liuzengzhang666采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035