Dense Sequential Fusion: Point Cloud Enhancement Using Foreground Mask Guidance for Multimodal 3-D Object Detection

计算机视觉 人工智能 激光雷达 计算机科学 点云 稳健性(进化) 目标检测 传感器融合 模式识别(心理学) 遥感 生物化学 化学 基因 地质学
作者
Chen Xie,Ciyun Lin,Xiaoyu Zheng,Bowen Gong,Hongchao Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:5
标识
DOI:10.1109/tim.2023.3332935
摘要

Object detection forms the foundation of safe autonomous vehicle (AV) operation. LiDAR and camera are both widely used detection devices, yet they each come with their unique advantages and drawbacks. For instance, LiDAR sensors face challenges such as obstacle occlusion and long-range object detection when applied to 3-D object recognition. On the other hand, cameras are significantly affected by variations in lighting and weather conditions, and they struggle to provide precise depth information. Hence, multisensor fusion is frequently employed to enhance both the accuracy and robustness of object detection. Prominent issues associated with end-to-end fusion include feature misalignment and suboptimal training strategies, while the challenge for the sequential fusion architecture lies in its inability to fully tap into the capabilities of high-density images to enhance point cloud data, especially when dealing with information sparsity at extended ranges. To address these challenges, we present a dense sequential fusion (DSF) framework specifically designed to fuse camera and LiDAR sensor data. The primary goal is to enhance the accuracy and robustness of 3-D object detection, particularly for distant objects. First, we developed a model for augmenting foreground points, specifically targeting sparse points associated with far-range objects. Second, a foreground points refinement technique was implemented to filter long-tail points generated by images. This refinement process has the capability to improve the object's distinctiveness, especially when dealing with an abundance of edge points while also supplying high-resolution raw and pseudo foreground points. Finally, voxel-based LiDAR 3-D detection methods were employed to detect 3-D objects utilizing the high-resolution raw and pseudo point clouds. The experimental studies were conducted using the KITTI dataset. The results showed that the proposed method improved 3-D mAP by 2.59% compared with PointPillars and 1.27% average precision (AP) for car hard-level detection compared with SECOND. Furthermore, it improved the bird's eye view (BEV) AP for far-range car detection by more than 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
章鱼完成签到,获得积分10
1秒前
敖江风云完成签到,获得积分10
5秒前
啊凡完成签到 ,获得积分10
5秒前
耍酷寻双完成签到 ,获得积分10
10秒前
Jeffrey完成签到,获得积分10
12秒前
smm完成签到 ,获得积分10
15秒前
嘿哈完成签到,获得积分10
18秒前
怎么睡不醒完成签到 ,获得积分10
19秒前
Johnson完成签到 ,获得积分10
21秒前
销户完成签到 ,获得积分10
23秒前
25秒前
细心的向日葵完成签到,获得积分10
28秒前
阿饼完成签到 ,获得积分10
36秒前
hyf完成签到 ,获得积分10
37秒前
研友_Ze2wB8完成签到,获得积分10
38秒前
iuhgnor完成签到,获得积分10
39秒前
xcwy完成签到,获得积分10
39秒前
king完成签到,获得积分10
40秒前
drz完成签到 ,获得积分10
42秒前
xiying完成签到 ,获得积分10
44秒前
健壮的芷容完成签到,获得积分10
46秒前
华仔应助研友_Ze2wB8采纳,获得10
46秒前
迷人的灵萱完成签到 ,获得积分10
48秒前
52秒前
nianshu完成签到 ,获得积分10
52秒前
Slemon完成签到,获得积分10
52秒前
xiaofenzi完成签到,获得积分10
52秒前
4865发布了新的文献求助10
55秒前
58秒前
58秒前
swy212完成签到,获得积分10
1分钟前
北海完成签到,获得积分10
1分钟前
wangye完成签到 ,获得积分10
1分钟前
caohuijun发布了新的文献求助10
1分钟前
盼盼完成签到,获得积分10
1分钟前
1分钟前
爱吃大米完成签到,获得积分10
1分钟前
爱吃大米发布了新的文献求助10
1分钟前
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736728
求助须知:如何正确求助?哪些是违规求助? 3280670
关于积分的说明 10020304
捐赠科研通 2997406
什么是DOI,文献DOI怎么找? 1644527
邀请新用户注册赠送积分活动 782060
科研通“疑难数据库(出版商)”最低求助积分说明 749656