DANT-GAN: A dual attention-based of nested training network for infrared and visible image fusion

保险丝(电气) 判别式 计算机科学 人工智能 过程(计算) 图像(数学) 特征(语言学) 图像融合 对偶(语法数字) 计算机视觉 模式识别(心理学) 融合 灵活性(工程) 基本事实 数学 艺术 哲学 工程类 文学类 电气工程 操作系统 统计 语言学
作者
Kaixin Li,Gang Liu,Xinjie Gu,Haojie Tang,Jinghua Xiong,Yao Qian
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:145: 104316-104316 被引量:7
标识
DOI:10.1016/j.dsp.2023.104316
摘要

Existing infrared and visible image fusion methods based on attention mechanisms can perceive the most discriminative regions of the two images. However, the disadvantage is that too many weights are assigned to the area of interest, so some details in the local region are ignored. To solve this problem, we propose a Dual Attention-based Nested Training Network (DANT-GAN), which uses two attention mechanisms to extract and fuse features for local regions and the whole image, respectively. The training process of the entire image is embedded in the training process of the local area of the image, and the training result of the local attention mechanism in each epoch is used as the input to extract and fuse the features of the mixed domain of the whole image. In this way, the information of the attention region can be preserved, and the information lost in the feature extraction phase can be compensated. In addition, the training process is accelerated by increasing the link of generating the teaching network, prompting the model to learn to simulate the fusion ground truth. Experiments show that DANT-GAN can well capture the local and overall attention characteristics of images and describe them on an image. The fusion result can well maintain information in source images, avoids the defect of losing details caused by fusion relying on single attention, and requires fewer computing resources. We compare other state-of-the-art fusion methods on two public datasets, achieving optimal values on SCD, CC, and SSIM. Finally, the effectiveness of the proposed method is verified by ablation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AURORA发布了新的文献求助10
刚刚
刚刚
henry完成签到,获得积分10
1秒前
烟花应助霸气的又琴采纳,获得10
2秒前
3秒前
摆不烂发布了新的文献求助10
5秒前
善学以致用应助blind采纳,获得10
5秒前
夏远航应助皖医梁朝伟采纳,获得60
7秒前
8秒前
CodeCraft应助aaaaaa采纳,获得10
8秒前
9秒前
木土完成签到 ,获得积分10
10秒前
彩彩完成签到,获得积分20
10秒前
调研昵称发布了新的文献求助10
11秒前
鲤鱼梦柳完成签到 ,获得积分10
12秒前
情怀应助likw23采纳,获得20
14秒前
贝壳发布了新的文献求助10
14秒前
fgfdgf完成签到,获得积分10
14秒前
在水一方应助勤奋冬寒采纳,获得10
17秒前
清爽灰狼完成签到,获得积分10
17秒前
Lucas应助王宇辉采纳,获得10
17秒前
19秒前
19秒前
19秒前
Tracy完成签到 ,获得积分10
21秒前
研友_VZG7GZ应助安寒采纳,获得10
22秒前
YDSG完成签到,获得积分10
22秒前
忧虑的代容完成签到,获得积分10
23秒前
yfy发布了新的文献求助10
24秒前
Tracy关注了科研通微信公众号
24秒前
Genmii完成签到,获得积分10
25秒前
tl完成签到,获得积分10
25秒前
26秒前
星辰大海应助认真的傲柏采纳,获得10
28秒前
过冷风完成签到,获得积分10
28秒前
28秒前
田様应助妮儿采纳,获得10
29秒前
Owen应助hui采纳,获得10
29秒前
29秒前
英姑应助摆不烂采纳,获得10
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187