清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DANT-GAN: A dual attention-based of nested training network for infrared and visible image fusion

保险丝(电气) 判别式 计算机科学 人工智能 过程(计算) 图像(数学) 特征(语言学) 图像融合 对偶(语法数字) 计算机视觉 模式识别(心理学) 融合 灵活性(工程) 基本事实 数学 艺术 语言学 哲学 统计 文学类 电气工程 工程类 操作系统
作者
Kaixin Li,Gang Liu,Xinjie Gu,Haojie Tang,Jinxin Xiong,Yao Qian
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:145: 104316-104316 被引量:13
标识
DOI:10.1016/j.dsp.2023.104316
摘要

Existing infrared and visible image fusion methods based on attention mechanisms can perceive the most discriminative regions of the two images. However, the disadvantage is that too many weights are assigned to the area of interest, so some details in the local region are ignored. To solve this problem, we propose a Dual Attention-based Nested Training Network (DANT-GAN), which uses two attention mechanisms to extract and fuse features for local regions and the whole image, respectively. The training process of the entire image is embedded in the training process of the local area of the image, and the training result of the local attention mechanism in each epoch is used as the input to extract and fuse the features of the mixed domain of the whole image. In this way, the information of the attention region can be preserved, and the information lost in the feature extraction phase can be compensated. In addition, the training process is accelerated by increasing the link of generating the teaching network, prompting the model to learn to simulate the fusion ground truth. Experiments show that DANT-GAN can well capture the local and overall attention characteristics of images and describe them on an image. The fusion result can well maintain information in source images, avoids the defect of losing details caused by fusion relying on single attention, and requires fewer computing resources. We compare other state-of-the-art fusion methods on two public datasets, achieving optimal values on SCD, CC, and SSIM. Finally, the effectiveness of the proposed method is verified by ablation experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
kmzzy完成签到,获得积分10
4秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
hsj完成签到,获得积分10
1分钟前
秦明完成签到 ,获得积分10
1分钟前
VDC关闭了VDC文献求助
1分钟前
简单的含巧完成签到,获得积分20
1分钟前
想上985完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
VDC发布了新的文献求助10
2分钟前
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
2分钟前
2分钟前
艾希德露发布了新的文献求助10
2分钟前
Lucas应助yy采纳,获得10
2分钟前
2分钟前
酷波er应助VDC采纳,获得10
2分钟前
onestep完成签到,获得积分10
3分钟前
tt完成签到,获得积分10
3分钟前
3分钟前
VDC发布了新的文献求助10
3分钟前
3分钟前
electricelectric完成签到,获得积分0
4分钟前
Huzhu应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498422
求助须知:如何正确求助?哪些是违规求助? 4595652
关于积分的说明 14449590
捐赠科研通 4528514
什么是DOI,文献DOI怎么找? 2481546
邀请新用户注册赠送积分活动 1465666
关于科研通互助平台的介绍 1438429