DANT-GAN: A dual attention-based of nested training network for infrared and visible image fusion

保险丝(电气) 判别式 计算机科学 人工智能 过程(计算) 图像(数学) 特征(语言学) 图像融合 对偶(语法数字) 计算机视觉 模式识别(心理学) 融合 灵活性(工程) 基本事实 数学 艺术 语言学 哲学 统计 文学类 电气工程 工程类 操作系统
作者
Kaixin Li,Gang Liu,Xinjie Gu,Haojie Tang,Jinxin Xiong,Yao Qian
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:145: 104316-104316 被引量:13
标识
DOI:10.1016/j.dsp.2023.104316
摘要

Existing infrared and visible image fusion methods based on attention mechanisms can perceive the most discriminative regions of the two images. However, the disadvantage is that too many weights are assigned to the area of interest, so some details in the local region are ignored. To solve this problem, we propose a Dual Attention-based Nested Training Network (DANT-GAN), which uses two attention mechanisms to extract and fuse features for local regions and the whole image, respectively. The training process of the entire image is embedded in the training process of the local area of the image, and the training result of the local attention mechanism in each epoch is used as the input to extract and fuse the features of the mixed domain of the whole image. In this way, the information of the attention region can be preserved, and the information lost in the feature extraction phase can be compensated. In addition, the training process is accelerated by increasing the link of generating the teaching network, prompting the model to learn to simulate the fusion ground truth. Experiments show that DANT-GAN can well capture the local and overall attention characteristics of images and describe them on an image. The fusion result can well maintain information in source images, avoids the defect of losing details caused by fusion relying on single attention, and requires fewer computing resources. We compare other state-of-the-art fusion methods on two public datasets, achieving optimal values on SCD, CC, and SSIM. Finally, the effectiveness of the proposed method is verified by ablation experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于胜男完成签到,获得积分10
刚刚
1秒前
ZS完成签到,获得积分10
1秒前
日暮倚修竹完成签到,获得积分10
1秒前
芝士椰果发布了新的文献求助10
1秒前
耳机分你一只诺完成签到,获得积分10
1秒前
陌上苏凉完成签到,获得积分10
1秒前
Ava应助嘻嘻哈哈采纳,获得10
1秒前
1秒前
2秒前
积极凌兰完成签到 ,获得积分10
3秒前
今后应助秀丽的小懒虫采纳,获得10
3秒前
hqlran完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
WX完成签到,获得积分10
5秒前
6秒前
未来完成签到,获得积分20
6秒前
沉静傻姑发布了新的文献求助10
7秒前
7秒前
8秒前
hoongyan完成签到 ,获得积分10
8秒前
超级的幻然完成签到,获得积分10
8秒前
mmol完成签到,获得积分10
9秒前
gdh发布了新的文献求助10
9秒前
哈哈完成签到,获得积分10
9秒前
Jasper应助未来采纳,获得10
9秒前
10秒前
蓝色雪狐完成签到,获得积分20
10秒前
10秒前
淑儿哥哥发布了新的文献求助10
11秒前
cch发布了新的文献求助30
11秒前
12秒前
孙元应助脆啵啵马克宝采纳,获得10
12秒前
12秒前
甜橙完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
考博圣体发布了新的文献求助10
14秒前
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186