Pixel‐level thin crack detection on road surface using convolutional neural network for severely imbalanced data

像素 卷积神经网络 增采样 背景(考古学) 计算机科学 卷积(计算机科学) 人工智能 路面 网(多面体) 人工神经网络 模式识别(心理学) 图像(数学) 计算机视觉 数学 材料科学 地质学 几何学 复合材料 古生物学
作者
Thitirat Siriborvornratanakul
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (16): 2300-2316 被引量:7
标识
DOI:10.1111/mice.13010
摘要

Abstract Because roads are the major backbone of the transportation network, research about crack detection on road surfaces has been popular in computer and infrastructure engineering. When training a convolutional neural network (CNN) for pixel‐level road crack detection, three common challenges include (1) the data are severely imbalanced, (2) crack pixels can be easily confused with normal road texture and other visual noises, and (3) there are many unexplainable characteristics regarding the CNN itself. When it comes to very fine and thin cracks, these challenges are exaggerated and a new challenge is introduced, as there can be a discrepancy between the actual width and the annotated width of a crack. To tackle all these challenges of thin crack detection, this paper proposes a new variant of CNN named ThinCrack U‐Net, designed to provide thin results upon pixel‐level crack detection on road surfaces. The main contribution is to demystify how pixel‐level thin crack detection results are affected by different loss functions as well as various combinations of the U‐Net components. The experimental results show that ThinCrack U‐Net yields a significant performance boost in CrackTree260, from 65.71% to 94.48% F‐measure, compared to the existing variant of U‐Net previously proposed in the context of pixel‐level thin crack detection. Finally, this paper locates the source of undesirable result thickness and solves it with the balanced usage of downsampling/upsampling layers and atrous convolution. Unlike suggested by previous works, different loss functions show no significant impact on ThinCrack U‐Net, whereas normalization layers are proved crucial in pixel‐level thin crack detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Annie发布了新的文献求助10
2秒前
3秒前
土行孙发布了新的文献求助10
3秒前
4秒前
研友_VZG7GZ应助梅子采纳,获得10
4秒前
Ava应助悦耳孤萍采纳,获得10
5秒前
pan发布了新的文献求助10
5秒前
5秒前
5秒前
快乐滑板应助柒柒采纳,获得10
5秒前
Hugo完成签到,获得积分10
6秒前
chengqi完成签到,获得积分10
7秒前
飞飞鱼发布了新的文献求助10
7秒前
情怀应助舒心的黎云采纳,获得10
8秒前
zai发布了新的文献求助10
8秒前
汉堡包应助波力海苔采纳,获得10
9秒前
FashionBoy应助lize5493采纳,获得10
10秒前
善学以致用应助pan采纳,获得10
11秒前
11秒前
Eternity完成签到,获得积分10
12秒前
田様应助旺旺碎采纳,获得10
15秒前
15秒前
15秒前
小钱全完成签到,获得积分10
15秒前
张圆梦完成签到,获得积分20
15秒前
小马甲应助ddddd采纳,获得10
17秒前
共享精神应助Annie采纳,获得10
17秒前
星辰大海应助土行孙采纳,获得10
18秒前
18秒前
小马甲应助幻月采纳,获得10
18秒前
互助遵法尚德应助zai采纳,获得10
18秒前
蔺不平发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
匆匆完成签到 ,获得积分10
21秒前
巴啦啦完成签到 ,获得积分20
22秒前
LL发布了新的文献求助10
23秒前
林夕儿完成签到 ,获得积分10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812648
关于积分的说明 7895876
捐赠科研通 2471484
什么是DOI,文献DOI怎么找? 1316042
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112