Predicting the risk of heart failure after acute myocardial infarction using an interpretable machine learning model

心肌梗塞 心力衰竭 医学 心脏病学 内科学 人工智能 计算机科学
作者
Qingqing Lin,Wenxiang Zhao,Hailin Zhang,Wenhao Chen,Sheng Lian,Qinyun Ruan,Zhaoyang Qu,Yi-min Lin,Dajun Chai,Xiaoyan Lin
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fcvm.2025.1444323
摘要

Background Early prediction of heart failure (HF) after acute myocardial infarction (AMI) is essential for personalized treatment. We aimed to use interpretable machine learning (ML) methods to develop a risk prediction model for HF in AMI patients. Methods We retrospectively included patients initially with AMI who received percutaneous coronary intervention (PCI) in our hospital from November 2016 to February 2020. The primary endpoint was the occurrence of HF within 3 years after operation. For developing a predictive model for HF risk in AMI patients, the least absolute shrinkage and selection operator (LASSO) Regression was used to feature selection, and four ML algorithms including Random Forest (RF), Extreme Gradient Boost (XGBoost), Support Vector Machine (SVM), and Logistic Regression (LR) were employed to develop the model on the training set. The performance evaluation of the prediction model was carried out on the training set and the testing set, utilizing metrics including AUC (Area under the receiver operating characteristic curve), calibration plot, and decision curve analysis (DCA). In addition, we used the Shapley Additive Explanations (SHAP) value to determine the importance of the selected features and interpret the optimal model. Results A total of 1220 AMI patients were included and 244 (20%) patients developed HF during follow-up. Among the four evaluated ML models, the XGBoost model exhibited exceptional accuracy, with an AUC value of 0.922. The SHAP method showed that left ventricular ejection fraction (LVEF), left ventricular end-systolic diameter (LVDs) and lactate dehydrogenase (LDH) were identified as the three most important characteristics to predict HF risk in AMI patients. Individual risk assessment was performed using SHAP plots and waterfall plot analysis. Conclusions Our research demonstrates the potential of ML methods in the early prediction of HF risk in AMI patients. Furthermore, it enhances the interpretability of the XGBoost model through SHAP analysis to guide clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
肖肖肖完成签到 ,获得积分10
1秒前
haoxing完成签到,获得积分10
3秒前
3秒前
bkagyin应助Benjamin_zz采纳,获得50
4秒前
双吉完成签到,获得积分10
4秒前
quora完成签到,获得积分10
4秒前
5秒前
斑ban发布了新的文献求助10
6秒前
7秒前
7秒前
Lucas应助壮观以松采纳,获得10
9秒前
9秒前
之和发布了新的文献求助10
9秒前
梅奥发布了新的文献求助10
10秒前
斯文败类应助一二采纳,获得10
12秒前
月落漪完成签到,获得积分10
14秒前
Whisper发布了新的文献求助10
14秒前
quora发布了新的文献求助10
14秒前
dsacasd发布了新的文献求助30
15秒前
ZIYE关注了科研通微信公众号
19秒前
Benjamin_zz关注了科研通微信公众号
20秒前
Jennifer应助April采纳,获得10
20秒前
科研通AI2S应助祝顺遂采纳,获得10
20秒前
20秒前
英俊的铭应助Drwang采纳,获得10
21秒前
22秒前
南境发布了新的文献求助10
22秒前
wang发布了新的文献求助10
24秒前
29秒前
30秒前
scc完成签到,获得积分10
30秒前
科目三应助ws采纳,获得10
30秒前
xdy完成签到 ,获得积分10
33秒前
多情的捕发布了新的文献求助10
34秒前
标致乐双发布了新的文献求助10
36秒前
单薄的千青完成签到 ,获得积分10
37秒前
37秒前
科研搬运工完成签到,获得积分10
38秒前
38秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3411597
求助须知:如何正确求助?哪些是违规求助? 3014846
关于积分的说明 8866544
捐赠科研通 2702422
什么是DOI,文献DOI怎么找? 1481688
科研通“疑难数据库(出版商)”最低求助积分说明 684901
邀请新用户注册赠送积分活动 679484